摘要
通过对文献的综述,本文总结了已有的选区激光熔化成形件的磨损特性研究,并提出了未来的研究方向,为该技术成形摩擦副的推广提供参考。本文通过干磨、边界润滑下的磨损、腐蚀以及冲蚀四个方面介绍了已有研究。总体来看,选区激光熔化成形件得益于均匀细晶,高致密度成形件的磨损率普遍低于传统制造件,然而孔隙的出现将降低成形件的抗磨性能。未来的研究内容主要包括孔隙对润滑的影响规律及其机理,以及如何通过主动控制激光工艺参数提高选区激光熔化成形件的抗磨能力。
Selective laser melting (SLM) is one type of additive manufacturing which produces metal parts by powder bed fusion. Since the materials undergo repeated and sharp heating/cooling cycles, the SLMed parts have unique microstructures. The rela- tions among SLM processing parameters, resultant microstructures, and mechanical properties have been investigated by many researchers. However, the wear performance of SLMed materials under various contact conditions has not been carried out until recently. This paper is a presentation of previous and recent research related to wear performance. This is a crucial aspect ifSLM is to be expanded to produce friction pairs. Wear rates and mechanisms of the SLMed materials under dry, boundary lubrication, cavitation erosion, and corrosion conditions are discussed and compared with conventionally processed (CP) materials. SLMed materials benefit from fine grains and high hardness, which have higher wear resistance than CP materials. Moreover, a unique tribo-layer on the surface of the SLMed part is found to protect the bulk material under boundary lubrication conditions. An optimized combination of processing parameters increases part density, which further improves the wear resistance. Future work includes studying the influence of pores on the deforming and lubricating behaviors from dry conditions to different lubrication regimes. The final target is to actively control the processing parameters to obtain desirable material properties for improving wear performance.
基金
Project supported by the National Natural Science Foundation of China(Nos.51775486 and 51521064)
the Fundamental Research Funds for the Central Universities of China(No.2017FZA4001)
the National Basic Research Program(973 Program)of China(No.2015CB058100)
关键词
选区激光熔化
磨损
增材制造
润滑
孔隙
Wear
Selective laser melting (SLM)
Additive manufacturing
Lubrication
Pores