期刊文献+

反向散射通信辅助的认知无线能量通信网络的时间分配研究 被引量:4

Time Allocation Optimization in Backscatter Assisted Cognitive Wireless Powered Communication Networks
下载PDF
导出
摘要 为了改善次发射机的性能,本文在衬底式(Underlay)认知无线能量通信网络(Cognitive Wireless Powered Communication Networks,CWPCNs)中提出了一种新的网络模型,该网络含有一个主发射机和两个由次发射机和次接收机组成的次用户对。次发射机可工作在反向散射通信(Backscatter Communication,Back Com)和收集再传输(Harvest-then-transmit,HTT)两种协议下。针对提高次网络的系统容量,根据收集的能量是否可以驱动次发射机工作,本文考虑了三种场景并针对每种场景设计了最优的时间分配方案。仿真结果表明,相比于单独利用BackCom或HTT协议以及协作式CWPCN,本文提出的新方法性能更佳。 In this paper, we study an underlay cognitive wireless powered communication network (CWPCN). In this model, there are a primary transmitter and two secondary user pairs, each of which contains a secondary transmitter and a secondary receiver. The secondary transmitter can work in both backscatter communication (BackCom) protocol and harvest- then-transmit (HTT) protocol. To maximize the system throughput of the secondary network, we investigate three cases depending on whether the harvested energy can meet the circuit power consumption of secondary users. For each case, the optimal time allocation policy is derived. Simulation results show that the performance for the proposed model in this paper outperforms that of the traditional models and cooperation CWPCN.
出处 《信号处理》 CSCD 北大核心 2018年第1期98-106,共9页 Journal of Signal Processing
基金 国家自然科学基金项目(61271335 61671252) 江苏省高校自然科学研究重大项目(14KJA510003)
关键词 认知无线能量通信网络 反向散射通信 收集再传输协议 时间分配 cognitive wireless powered communication network backscatter communication harvest-then-transmit protocol optimal time allocation
  • 相关文献

参考文献1

二级参考文献16

  • 1Donoho D L. Compressed sensing [ J ]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples : Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Infor- mation Theory, 2006, 52(2) : 489-509.
  • 3Tian Z, Giannakis G B. Compressed sensing for wide- band cognitive radios[ C ]///2010 IEEE International Con- ference on Acoustics, Speech and Signal Processing (IC- ASSP). Honolulu,HI,USA, 2007 : 1357-1360.
  • 4Polo Y L, Wang Y, Pandharipande A, et al. Compressive wide-band spectrum sensing[ C ]//2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Dallas, TX, USA, 2009: 2337-2340.
  • 5Havary-Nassab V, Hassan S, Valaee S. Compressive de- tection for wide-band spectrum sensing[ C ]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) , 2010: 3094-3097.
  • 6Ariananda D D, Leus G. Compressive wideband power spectrum estimation [ J ]. IEEE Transactions on Signal Processing, 2012, 60(9): 4775-4789.
  • 7Wang Y, Tian Z, Feng C. Sparsity order estimation and its application in compressive spectrum sensing for cogni- tive radios [ J ]. IEEE Transactions on Wireless Communi- cations, 2012, 11(6): 2116-2125.
  • 8Tian Z, Tafesse Y, Sadler B M. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing [ J]. IEEE Journal of Selected Topics in Signal Process- ing, 2012, 6(1) : 58-69.
  • 9Zhang D, Zhai X. SVM-based spectrum sensing in cogni- tive radio [ C ] //The 7th International Conference on Wireless Communications, Networking and Mobile Com-puting (WiCOM ' 11), Wuhan, China, 2011 : 1-4.
  • 10Calderbank R, Jafatur S, Schapire R. Compressed learn- ing: Universal sparse dimensionality reduction and learning in the measurement domain[EB/OL]. [2011-12-20].

共引文献4

同被引文献18

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部