摘要
主要讨论与扩张矩阵M=diag[p_1,p_2,p_3](p_j∈Z\{0,±1},j=1,2,3)和数字集D={0,e_1,e_2,e_3,e_1+e_2,e_1+e_3,e_2+e_3,e_1+e_2+e_3}所对应的自仿测度μ_(M,D)的谱性,这里e_1,e_2,e_3是空间R^3中的标准正交基.通过分析Fourier变换μ_(M,D)的零点Z(μ_(M,D))的特征,证明当p_j∈2Z+1\{0,±1},j=1,2,3,μ_(M,D)是非谱测度,空间L^2(μ_(M,D))中正交指数函数系至多包含"8"个,且数字"8"是最好的,推广了文献[14]相关的结果.
Abstract: In this paper, the spectral properties of the self-affine measure/XM,O corresponding to the expanding matrix M = diagM=diag[p_1,p_2,p_3](p_j∈Z/{0,±1},j=1,2,3)and the digital set D ={0,e_1,e_2,e_3,e_1+e_2,e_1+e_3,e_2+e_3,e_1+e_2+e_3}are discussed. Here e1 ,e: ,e3 is a standard or-thonormal base in space. By analyzing the characteristics of the zero point Z(μ_(M,D)of the Fou-rier transform μM,D,it is proved that when p_j∈2Z+1/{0,±1},j=1,2,3,μ_(M,D)contains at most "8", and the number "8" is the best, which extends the results of the literature [ 14].
出处
《西安文理学院学报(自然科学版)》
2018年第1期1-10,共10页
Journal of Xi’an University(Natural Science Edition)
基金
国家自然科学基金项目(11571214)
关键词
自仿测度
正交指数函数系
非谱性
数字集
self-affine measures
orthogonal exponentials
non-spectrality
digit set