摘要
利用数值方法和托马斯费米近似求解非线性薛定谔方程(Gross-Pitaevskii方程),应用量子变分原理分析化学势随一维散射强度的变化,研究玻色-爱因斯坦凝聚体基态稳定性,并计算了7Li原子最大凝聚原子数.
In this paper, the numerical method and Thomas-Fermi approximation are used to solve the nonlinear Schrodinger equation (Gross-Pitaevskii equation). The quantum variational principle is applied to analyze the variation of chemical potential with one-dimensional scattering intensity. The ground state stability of Bose-Einstein condensates is studied, and the maximum number of condensed atoms of is calculated.
出处
《西安文理学院学报(自然科学版)》
2018年第1期11-15,共5页
Journal of Xi’an University(Natural Science Edition)
基金
国家自然科学基金项目:"多组份含偶极作用超冷原子相图的研究"(11104143)
关键词
玻色-爱因斯坦凝聚
稳定性
GP方程
变分法
化学势
Bose-Einstein condensate
stability
GP equation
the variational principle
chemical potential