摘要
为解决当前WSN数据误差追踪算法中存在的算法鲁棒性不强,区域融合困难,以及传输链路抖动严重的不足,提出了一种基于块融合机制的WSN数据误差追踪算法.首先基于块融合方式,通过中央控制节点之间拓扑位置关系,有效实现对数据传输过程中的误差轨迹追踪,且能够采用矢量化方式来改善数据传输质量;随后采取能量排序的方式构建传输阈值,并利用该阈值实现对传输过程中的数据进行均衡化,且能够进一步实现周期内的中央控制节点性能的扫描,从而改善了因块区域间数据链路抖动而引起的传输误差.理论分析和仿真实验均表明:与当前常用的超混沌数据追踪算法(Hyper Chaos Data Tracking algorithm,HCDT算法)相比,文中算法能够更有效的降低数据传输抖动的同时,且具备更小的区域融合误差与更高的误差追踪效率.
In order to solve the shortcomings of current WSN data error tracking algorithm, such as poor robustness, difficult regional fusion and severe shortage of transmission link jitter, a WSN data error tracking algorithm based on block fusion mechanism is proposed in this paper. Firstly, based on the block fusion method, the error trajectory in data transmission process can be effectively tracked through the topological location relationship between the central control nodes, and the vectorization can be used to improve the quality of data transmission. Subse- quently, the transmission threshold is constructed by the way of energy sorting. The threshold is used to balance the data in the transmission process, and it can further realize the scanning of the performance of the central control node in the cycle. Thus, the transmission error caused by the data link jitter between blocks is improved. Both theoretical analysis and simulation experi- ments show that : Compared with the commonly used hyper chaotic data tracking algorithm ( Hyper Chaos Data Tracking algorithm, HCDT algorithm), this algorithm can reduce data trans- mission jitter more effectively, and it has smaller regional fusion error and higher error tracking efficiency.
出处
《西安文理学院学报(自然科学版)》
2018年第1期49-53,103,共6页
Journal of Xi’an University(Natural Science Edition)
基金
安徽省高校自然科学研究重点项目(KJ2017A745)