期刊文献+

微观相场法反演Ni_(0.75)Al_xV_(0.25-x)合金的原子间相互作用势 被引量:2

Inversion of the Interatomic Potential in Ni_(0.75)Al_xV_(0.25-x) Alloy by Microscopic Phase-Field Simulation
原文传递
导出
摘要 采用微观相场法,利用Khachaturyan所给原子间相互作用势与长程序参数关系方程,计算出Ni_(0.75)Al_xV_(0.25-x)合金L1_0、L1_2和DO_(22)相第一近邻原子间相互作用势,并用计算的原子间相互作用势模拟了Ni_(0.75)Al_xV_(0.25-x)合金沉淀过程以及最终形貌。计算结果表明,L1_0、L1_2和DO_(22)相第一近邻原子间相互作用势随温度增大而增大,随浓度增大而增大,且计算得到的随温度和浓度变化的原子间相互作用势与之前的实验值符合较好。计算的原子间相互作用势的模拟结果能依次得到预析出相L1_0、稳定相L1_2和第二相DO_(22),且合金沉淀形貌与实验结果吻合。相场法反演原子间相互作用势,拓宽了相场法在合金设计中的应用范围。 The first nearest neighbor interatomic potentials of Nio.75AlxVo.2s-x alloy's for Llo, L12 and DO22 phases were calculated out according to the formula which were referenced on the relation equation between interatomic potentials and long range order parameters by Khachaturyan. Then we simulated the precipitation process and the final morphology of Nio.75AlxVo.25-x alloy using the calculated potentials based on the Microscopic Phase-field method. The results show that the interatomic potentials of Llo, L12 and DO22 phases will increase while the temperatures or the atom's concentration rise. And the interatomic potentials, which change with the temperature and the concentration, match well with the earlier values. The simulation results can obtain the pre-precipitation phase Llo, the stable phase L12 and the second phase DO22. And the alloy precipitation morphology is found to be in agreement with the experimental result. The inversion of interatomic potentials by the phase field method expands the application of the phase field method in the alloy design.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2018年第1期201-206,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51501165) 浙江省自然科学基金一般项目(LY15E020006 LY17E010002)
关键词 微观相场法 原子间相互作用势 Ni(0.75)AlxV(0.25-x)合金 反演 沉淀相 microscopic phase-field method interatomic potential Ni0.vsAlxV0.zs-x alloy inversion precipitated phase
  • 相关文献

参考文献3

二级参考文献54

  • 1梅炳初,王为民,袁润章.Ni_3Al的有序性、脆性及塑性[J].武汉工业大学学报,1996,18(1):1-4. 被引量:5
  • 2Landa A, Sadigh B. Physical Review[J], 2002, B 66:205109.
  • 3Vitos L, Kollar J, Skriver H L. Physical Review[J], 1997, B 55: 4947.
  • 4Hay P J, Martin R L. The Journal of Chemical Physics[J], 1998, 109:3875.
  • 5Li Quan(李权). Doctoral Dissertation[D]. Chengdu: Sichuan University, 2001:19.
  • 6Zhu Zhenghe(朱正和). Atomic and Molecular Reaction Statics (原子分子反应静力学)[M]. Beijing: Science Press, 2007:56.
  • 7MengDaqiao(蒙大桥) LiuXiaoya(刘晓亚) ZhangWanxiang(张万箱)etal.原子与分子物理学报,2000,.
  • 8Hecker S S. Metallurgical and Materials Transactions[J], 2008, A 39:1585.
  • 9Baclet N, Oudot B, Grynszpan R et al. Journal of Alloys and Compounds[J], 2007, 444-445:305.
  • 10Chung B W, Thompson S R, Woods C H et al. Journal of Nuclear Materials[J], 2006, 355:142.

共引文献7

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部