期刊文献+

基于反向传播神经网络的陶瓷损伤参数反演分析 被引量:5

Reversion Analysis of Ceramic Damage Based on Back Propagation Neural Network
下载PDF
导出
摘要 陶瓷材料冲击加载条件下的损伤累积过程伴随着裂纹扩展、体积膨胀等因素,为准确获取陶瓷损伤参数,以钨合金球弹丸高速撞击陶瓷复合装甲的侵彻深度实验为基础,获得了陶瓷面板破碎情况。根据现有文献[14]数据中陶瓷材料JH-II本构模型的损伤参数范围,确定了反向传播(BP)神经网络的样本点;采用有限元分析软件AUTODYN对所有样本点的侵彻过程进行数值模拟,结合仿真和实验数据完成了BP神经网络模型的建立和Ti B2-B4C复合材料损伤参数的反演。仿真结果和实验侵彻深度、回收陶瓷面板的损伤比对,充分验证了所建立的BP神经网络模型对陶瓷损伤参数反演的有效性。 Damage accumulation of ceramic material is accompanied by crack propagation and bulking under shock loading.In order to obtain the accurate damage parameters of ceramic,the tungsten alloy ball projectiles were used to penetrate into a ceramic composite armor at high speed,and the depth of penetration and the fracture degree of ceramic plate were gained.The sample points of back propagation neural network are determined according to the damage parameters of JH-II constitutive model in Ref.[14].The process of penetration into all sample points is numerically simulated by using the finite element analysis software AUTODYN.The establishment of BP neural network and the damage inversion of TiB2-B4C composites are accomplished by simulation and experimental data.The validity of BP neural network model for damage inversion is verified by comparing the simulated and experimental penetrating depths and fractures of recovered ceramic plates.
出处 《兵工学报》 EI CAS CSCD 北大核心 2018年第1期146-152,共7页 Acta Armamentarii
关键词 陶瓷 损伤 反向传播神经网络 JH-II本构模型 ceramic damage back propagation neural network JH-II constitutive model
  • 相关文献

参考文献1

二级参考文献14

  • 1常敬臻,刘占芳,李英华,李英雷,李建鹏.冲击压缩下A95陶瓷动态力学特性数值模拟[J].材料科学与工程学报,2007,25(4):616-619. 被引量:4
  • 2Straβburger E. Ballistic testing of transparent armour ceramics[J]. Journal of the European Ceramic Society, 2009, 29(2) :267-273.
  • 3Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials[C] // High Pres- sure Science and Technology-1993, New York : AIP Press, 1994 : 981-984.
  • 4Johnson G R, Holmquist T J, A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures[C]//Meyers M A, Murr L E, Staudhammer K P. Shock-wave and High-strain rate Phenomena in Materials. New York: Marcel Dekker Inc. , 1992 :1075-1081.
  • 5Holmquist T J, Johnson G R, Lopation C M, et al. High strain rate properties and constitute modeling of grass[C] //Proceedings of the 15th International Symposium on Ballistics. Jerusalem, Israel, 1995.
  • 6Johnson G R, Holmquist T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures[J].Journal of Applied Physics, 1999,85 (12) : 8060-8073.
  • 7Holmquist T J, Templeton D W, Bishnoi K D. Constitutive modeling of aluminum nitride for large strain, high- strain rate,and high-pressure applications[J]. International Journal of Impact Engineering, 2001,25(3) :211-231.
  • 8Wang Z, Mao H, Saxena S K. The melting of corundum (Al2O3) under high pressure conditions[J]. Journal of Alloys and Compounds, 2000,299(1-2) :287-291.
  • 9Grady D E. Dynamic properties of ceramic materials[R]. SAND94-3266,1995.
  • 10Grady D E. Shock-wave compression of brittle solids[J]. Mechanics of Materials, 1998,29(3-4) :181 -203.

共引文献28

同被引文献49

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部