期刊文献+

石墨烯负载纳米镍磁性材料的制备及性能测试 被引量:1

Synthesis and Properties of Reduced Graphene Oxide Supported Ni Nanoparticles Magnetic Composites
原文传递
导出
摘要 用Hummers法制备了氧化石墨烯,将其在氯化镍溶液中分散均匀,采用水合肼还原氧化石墨烯和镍离子,制备出石墨烯负载纳米镍磁性复合材料。采用FTIR、XRD、SEM、Raman和VSM观察分析了氧化、还原过程中样品的结构演变及静态磁性能,结果表明,氧化石墨烯表面含有大量氧化基团,其晶间距较鳞片石墨大,并呈现出非晶特征。还原后纳米镍颗粒分布在石墨烯表面和层间,当镍添加量从10%(w)增加至50%时,复合材料的饱和磁化强度从0升高至50 emu/g,矫顽力从25 Oe升高至205 Oe。 Reduced graphene oxide supported Ni nano-particles magnetic composites were prepared by reduction of graphene ox- ide and nickel ions in water with hydrazine hydrate and the graphene oxide was synthesized by the Hummers method. The chan- ges of the contents and microstructures of the graphite and the magnetic properties of the composites were observed by FTIR, XRD, SEM, Raman and VSM. The results showed that the graphene oxide contained a large amount of oxidizing groups, and their intergranular distances were larger than that of graphite and exhibited amorphous characteristics. The nickel nanoparticles were distributed on the surfaces and interlayers of graphene and were accompanied by segregation. The saturated magnetization of the composites increased from 0 to 50 emu/g and the coercivity increased from 25 Oe to 205 Oe when the addition of nickel changed from 10% to 50%.
作者 刘奇 苏孟兴 姚正军 王晶晶 孙琳 LIU Qi;su Mengxing;YAO Zhengjun;WANG Jingjing;SUN Ling(Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210000, China;Advanced Materials Academy, Luoyang Ship Material Research Institute, Xiamen 361101, China;State Key Laboratory for Marine Corrosion and Protection, Qingdao 266101, China;CRPC Qingdao Sifang Co., LTD., Qingdao 266111, China)
出处 《材料开发与应用》 CAS 2017年第6期80-86,共7页 Development and Application of Materials
基金 厦门市科技重大专项(3502Z20171002)
关键词 氧化石墨烯 水合肼 石墨烯负载纳米镍 饱和磁化强度 graphene oxide hydrazine hydrate reduced graphene oxide supported Ni nanoparticles saturated magnetization
  • 相关文献

参考文献11

二级参考文献154

  • 1贾宝富,刘述章,林为干.反雷达涂敷材料中吸收粒子的最佳外形[J].电子科技大学学报,1990,19(4):342-345. 被引量:7
  • 2Mazdak T. Trends in graphene research, Materials Today, 2009,12(10): 34-37,.
  • 3Zhou K F, Zhu Y H, Yang X L, et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochimica Acta, 2010, 55(9): 3055-3060.
  • 4Shan C H, Yang H F, Hart D X, et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Bioelectrochemistry, 2010, 25(5): 1070-1074.
  • 5Chi M, Zhao Y E Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Computational Materials Science, 2009, 46(4): 1085-1090.
  • 6Lu T, Zhang Y P, Li H B, et al. Electrochemical behaviors of graphene-ZnO and grapheme-SnO2 composite films for supercapacitors. Electrochimica Acta, 2010, 55(13): 4170-4173.
  • 7Park H L, Yi S C, Chung Y C, et al. Hydrogen adsorption on Li metal in boron-substituted graphene: an ab initio approach. International Journal of Hydrogen Energy, 2010, 35(8): 3583-3587.
  • 8Rao C N R, Sood A K, Subrahrnanyarn K S, et al. Grephene: the new two-dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.
  • 9Yao J, Shen X P, Wang B. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11(10): 1849-1852.
  • 10Si Y C, Samulski E T. Synthesis of water soluble graphene. Nano Letters, 2008, 8(6): 1679-1682.

共引文献251

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部