期刊文献+

A New Negative Discrete Hierarchy and Its N-Fold Darboux Transformation

A New Negative Discrete Hierarchy and Its N-Fold Darboux Transformation
原文传递
导出
摘要 Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained. Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained.
作者 张宁 夏铁成
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第12期687-692,共6页 理论物理通讯(英文版)
基金 Supported by the Natural Science Foundation of China under Grant Nos.11271008 and 61072147
关键词 discrete integrable system bi-Hamiltonian structure Liouville integrability N-fold Darboux transformation exact solutions discrete integrable system, bi-Hamiltonian structure, Liouville integrability, N-fold Darbouxtransformation, exact solutions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部