期刊文献+

Rietveld refinement,microstructure,mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C(x=10 and 12 wt.%)low-density steels 被引量:2

Rietveld refinement,microstructure,mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C(x=10 and 12 wt.%)low-density steels
原文传递
导出
摘要 The quantitative relationship between microstructure and properties of austenitic Fe-28Mn-xAl-1C(x=10 and 12 wt.%)low-density steels was evaluated using Rietveld method to refine X-ray diffraction(XRD)patterns.The results showed that a typical three-phase austenitic steel was obtained in the forged Mn28Al10(i.e.Fe-28Mn-10Al-1C)steel,which included about 92.85 wt.% γ-Fe(Mn,Al,C)(austenite),5.28 wt.%(Fe,Mn)_3AlC_(0.5)(κ-carbide),and 1.87 wt.% α-Fe(Al,Mn)(ferrite).For the forged Mn28Al12(i.e.Fe-28Mn-12Al-1C)steel,nevertheless,only about 76.64 wt.% austenite,9.63 wt.%κ-carbide,9.14 wt.%ferrite and 4.59 wt.% Fe_3Al(DO_3)could be obtained.Nanometerκ-carbide and DO_3 were mainly distributed in austenite grains and at the interface between austenite and ferrite,respectively.The forged Mn28Al10 steel had a better combination of strength,ductility and specific strength as compared with the forged Mn28Al12 steel.The ductility of the forged Mn28Al12 steel was far lower than that of the forged Mn28Al10 steel.The oxidation kinetics of Mn28Al10 steel oxidized at 1323 Kfor 5-25 h had two-stage linear rate laws,and the oxidation rate of the second stage was faster than that of the first stage.Although the oxidation kinetics of Mn28Al12 steel under this condition also had two-stage linear rate laws,the oxidation rate of the second stage was slower than that of the first stage.When the oxidation temperature increased to 1373K,the oxidation kinetics of the two steels at 5-25 hhad only onestage linear rate law,and the oxidation rates of the two steels were far faster than those at 1323K for5-25 h.The oxidation resistance of Mn28Al12 steel was much better than that of Mn28Al10 steel.Ferrite layer formed between the austenite matrix and the oxidation layer of the two Fe-Mn-Al-C steels oxidized at high temperature. The quantitative relationship between microstructure and properties of austenitic Fe-28Mn-xAl-1C(x=10 and 12 wt.%)low-density steels was evaluated using Rietveld method to refine X-ray diffraction(XRD)patterns.The results showed that a typical three-phase austenitic steel was obtained in the forged Mn28Al10(i.e.Fe-28Mn-10Al-1C)steel,which included about 92.85 wt.% γ-Fe(Mn,Al,C)(austenite),5.28 wt.%(Fe,Mn)_3AlC_(0.5)(κ-carbide),and 1.87 wt.% α-Fe(Al,Mn)(ferrite).For the forged Mn28Al12(i.e.Fe-28Mn-12Al-1C)steel,nevertheless,only about 76.64 wt.% austenite,9.63 wt.%κ-carbide,9.14 wt.%ferrite and 4.59 wt.% Fe_3Al(DO_3)could be obtained.Nanometerκ-carbide and DO_3 were mainly distributed in austenite grains and at the interface between austenite and ferrite,respectively.The forged Mn28Al10 steel had a better combination of strength,ductility and specific strength as compared with the forged Mn28Al12 steel.The ductility of the forged Mn28Al12 steel was far lower than that of the forged Mn28Al10 steel.The oxidation kinetics of Mn28Al10 steel oxidized at 1323 Kfor 5-25 h had two-stage linear rate laws,and the oxidation rate of the second stage was faster than that of the first stage.Although the oxidation kinetics of Mn28Al12 steel under this condition also had two-stage linear rate laws,the oxidation rate of the second stage was slower than that of the first stage.When the oxidation temperature increased to 1373K,the oxidation kinetics of the two steels at 5-25 hhad only onestage linear rate law,and the oxidation rates of the two steels were far faster than those at 1323K for5-25 h.The oxidation resistance of Mn28Al12 steel was much better than that of Mn28Al10 steel.Ferrite layer formed between the austenite matrix and the oxidation layer of the two Fe-Mn-Al-C steels oxidized at high temperature.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第12期1190-1198,共9页 钢铁研究学报(英文版)
基金 funded by the National Natural Science Foundation of China (Grant No.51674004) Education Department of Anhui Province of China (Grant Nos.KJ2016A104 and KJ2017A805)
关键词 Low-density steel Rietveld method Microstructure Mechanical property Oxidation characteristics Low-density steel Rietveld method Microstructure Mechanical property Oxidation characteristics
  • 相关文献

同被引文献24

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部