期刊文献+

基于正弦余弦算法的汽轮机热耗率预测 被引量:6

Prediction of Steam Turbine Heat Rate Based on Sine Cosine Algorithm
下载PDF
导出
摘要 为了准确建立汽轮机热耗率预测模型,提出了一种基于量子位Bloch坐标编码自适应的改进后正弦余弦算法(ASCA)和快速学习网(FLN)综合建模的方法.首先将ASCA算法与经典的人工蜂群优化算法(ABC)、教与学优化算法(TLBO)和正弦余弦算法(SCA)进行比较,最后利用某600MW超临界汽轮机组现场运行数据建立汽轮机热耗率预测模型,并将ASCA算法优化的FLN模型(即ASCA-FLN模型)的预测结果与FLN、ABC-FLN、TLBO-FLN和SCA-FLN模型的预测结果进行比较.结果表明:ASCA-FLN模型具有更高的预测精度和更强的泛化能力,更能准确地预测汽轮机的热耗率. To accurately predict the heat rate of steam turbines, an integrated modeling method was pro- posed by combining an improved adaptive sine consine algorithm (ASCA) based on Bloch coordinates of qubits with the fast learning network (FLN). The specific way is to compare the ASCA with classical arti- ficial bee colony (ABC) algorithm, teaching-learning-based optimization (TLBO) algorithm and sine con- sine algorithm (SCA), and then to set up a prediction model for the heat rate using the operation data col- lected from a 600 MW supercritical steam turbine unit, and finally to contrast the prediction results among the ASCA-FLN, FLN, ABC-FLN, TLBO-FLN and SCA-FLN model. Results show that the ASCA-FLN prediction model has higher prediction accuracy and stronger generalization ability, which therefore can be used to predict the heat rate of steam turbines more accurately.
出处 《动力工程学报》 CAS CSCD 北大核心 2018年第2期85-91,共7页 Journal of Chinese Society of Power Engineering
基金 国家自然科学基金资助项目(61573306 61403331)
关键词 汽轮机 热耗率 正弦余弦算法 快速学习网 Bloch坐标 steam turbine heat rate sine cosine algorithm fast learning network Bloch coordinate
  • 相关文献

参考文献8

二级参考文献55

共引文献68

同被引文献69

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部