期刊文献+

单晶铝微尺度铣削表面质量实验研究 被引量:2

Experimental Study on Surface Quality of Single Crystal Aluminum in Micro-Milling
下载PDF
导出
摘要 为探究单晶铝微尺度铣削的表面质量,采用直径为0.4mm的微铣刀对单晶铝进行三因素五水平的微尺度铣削正交实验。首先,通过极差分析的方法得到:主轴转速对其表面质量的影响最大,进给速度的影响次之,铣削深度的影响最小;得到的最优工艺参数组合为:主轴转速为36000r/min,铣削深度为10μm,进给速度为80μm/s,此时单晶铝的表面质量最好。然后,分别得到主轴转速、铣削深度和进给速度对表面质量的影响规律,并对其原因进行了深入分析,为单晶铝材料的微尺度铣削加工提供理论依据。 In order to explore the surface quality of singlecrystal aluminum in micro-milling, a three-factor and five-level orthogonal experiment of singlecrystal aluminum in micro-milling was conducted by a micro-milling toolwith a diameter of 0.4mm. Firstly, conclusions can be drawn as the following with the method of range analysis: The spindle speed has the greatest effect onsurface quality and the feed rate follows. However, the milling depth has the least effect onsurface quality. The optimized parameters combination is as the following: Spindle speed is 36000r/mitt Milling depth is 10μm. Feedrate is 80μm/s. The surface quality of singlecrystal aluminum is the greatest with the parameters above. Then the influence of spindle speed andmilling depth and feed rate on surface quality was obtained respectively. Deeply analysis of its causes were also given,providing a theoretical basis for the processing of singlecrystal aluminum material in micro-milling.
出处 《机械设计与制造》 北大核心 2018年第2期85-87,共3页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(51375082) 国家自然科学基金资助项目(51775100) 中央高校基本科研业务专项资金资助项目(N160306001)
关键词 单晶铝 微尺度铣削 表面质量 正交实验 极差分析 最优工艺参数 Single Crystal Aluminum Micro-Milling Surface Quality Orthogonal Experiment Range Analysis Optimized Parameters
  • 相关文献

参考文献4

二级参考文献39

  • 1王振兴,王敏,邵华.切削参数对车削2A14锻铝合金表面粗糙度影响的试验研究[J].工具技术,2007(6):68-70. 被引量:4
  • 2曹自洋,何宁,李亮.微细切削加工技术[J].微细加工技术,2006(3):1-5. 被引量:20
  • 3陶春虎,张卫方,李运菊,施惠基.定向凝固和单晶高温合金的再结晶[J].失效分析与预防,2006,1(4):1-9. 被引量:45
  • 4马玉平,陈明,向道辉,孙方宏.DLC涂层硬质合金微钻的制备及其切削性能(英文)[J].Transactions of Nanjing University of Aeronautics and Astronautics,2007,24(2):89-93. 被引量:4
  • 5[1]Jordan E.H.,Walker K.P.A viscoplastic model for single crystal[J].Eng.Mater.and Technol.1992,114:19-26.
  • 6[3]Chaboche J.L.Viscoplastic Constitutive Equations for the Description of Cyclic and Anisotropic Behavior of Metals[J].Bulletin de L'Academie des Sciences,Serie des Sciences Techniques,1977,XXV(1):33-42.
  • 7[4]Miller A.An inelastic constitutive model for monotonic,cyclic and creep deformation:Part 1,Equations,Development and Analytical Procedures[J].Eng.Mater.and Technol.,1976,98:97-105.
  • 8[5]Bodner S.R.,Partom Y.Constitutive Equations for Elastic-Viscoplastic Strain Hardening Materials[J].ASME.Journal of Engineering Material and technology,Appl.Mech,1975,42(1):385-389.
  • 9[6]Hill R.A Theory of the Yielding and Plastic Flow of Anisotropic Metals[M].Proc.Royal Society of London,Ser.A,1948,193.281-297.
  • 10[7]Lee D.,Zaverl,F.,Shih C.F,et al.Plasticity Theories and Structural Analysis of Anisotropic Metals[R].No.77CRD285,General Electric Corporate Research and Development Center,Schenedtady,New York.1977.

共引文献26

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部