期刊文献+

基于多块MICA-PCA的全流程过程监控方法 被引量:7

Plant-wide process monitoring based on multiblock MICA-PCA
原文传递
导出
摘要 多块策略广泛应用于全流程过程监控领域,以解决变量关系复杂性较高的问题,但传统分块方法得到的子块数据存在高斯与非高斯混合分布问题,影响过程监控的效果.为此,提出一种基于多块MICA-PCA的过程监控方法.首先采用Jarque-Bera(J-B)检测方法对原始数据进行高斯与非高斯分块;然后利用Hellinger距离(HD)方法获得高斯与非高斯子块,通过对高斯与非高斯子块采用不同的建模和诊断方法,提高监控效果;最后将该方法应用于田纳西-伊斯曼(TE)过程的监控中,以验证所提出方法的有效性. The multiblock strategy is widely used for plant-wide process monitoring, to capture the relations between complex process variables of the plant-wide process, however, the sub-block data obtained from the traditional multiblock method still has the problem of non-Gaussian and Gaussian mixture distribution, which influences the performance of process monitoring. Therefore, a plant-wide process monitoring method based on multiblock MICA-PCA is proposed to improve the process monitoring performance. Firstly, the measured variables are automatically divided into non-Gaussian block and Gaussian block through the Jarque-Bera(J-B) test method, the non-Gaussian block and Gaussian block are divided into non-Gaussian sub-blocks and Gaussian sub-blocks through the Hellinger Distance(HD) method. By using different modeling and diagnosis methods for non-Gaussian sub-blocks and Gaussian sub-blocks, the monitoring effect is improved. Finally, the proposed method is applied to monitor the Tennessee-Eastman(TE) process, which shows its effectiveness.
出处 《控制与决策》 EI CSCD 北大核心 2018年第2期269-274,共6页 Control and Decision
基金 国家自然科学基金重点项目(61134007) 国家自然科学基金青年项目(61403141) 上海市"科技创新行动计划"研发平台建设项目(13DZ2295300) 上海市自然科学基金项目(14ZR1421800) 流程工业综合自动化国家重点实验室开放课题基金项目(PAL-N201404)
关键词 多块 全流程 主元分析 非高斯 multiblock plant-wideprocess principal component analysis non-Gaussian
  • 相关文献

参考文献2

二级参考文献22

  • 1Jiang Q, Wang B, Yan X. Multiblock independent component analysis integrated with hellinger distance and bayesian inference for non-Gaussian plant-wide process monitoring [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2497-2508.
  • 2Cai L, Tian X. A new process monitoring method based on noisy time structure independent component analysis [J]. Chinese Journal of Chemical Engineering, 2014, 23: 62-172.
  • 3Jiang Q, Yan X, Tong C. Double-weighted independent component analysis for non-Gaussian chemical process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14396-14405.
  • 4Li W, Yue H H, Valle-Cervantes S, et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000, 10(5): 471-486.
  • 5Hyv?rinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4): 411-430.
  • 6Lee J M, Qin S J, Lee I B. Fault detection of non-linear processes using kernel independent component analysis [J]. The Canadian Journal of Chemical Engineering, 2007, 85(4): 526-536.
  • 7Zhu W, Zhou J, Xia X, et al. A novel KICA-PCA fault detection model for condition process of hydroelectric generating unit [J]. Measurement, 2014, 58: 197-206.
  • 8Zhang Zhenyue, Zha Hongyuan. Principal manifolds and nonlinear dimension reduction via local tangent space alignment [J]. SLAM Journal of Scientific Computing, 2004, 26(1): 313-338.
  • 9Jiang Q, Yan X, Zhao W. Fault detection and diagnosis in chemical processes using sensitive principal component analysis [J]. Industrial & Engineering Chemistry Research, 2013, 52(4): 1635-1644.
  • 10Shao J D, Rong G. Nonlinear process monitoring based on maximum variance unfolding projections [J]. Expert Systems with Applications, 2009, 36(8): 11332-11340.

共引文献10

同被引文献60

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部