期刊文献+

Retractable Compact Directed Complete Poset (Acts)

Retractable Compact Directed Complete Poset (Acts)
原文传递
导出
摘要 Taking domains in the one hand and actions of a semigroup (automaton) on the other, as two crucial notions in mathematics as well as in computer science, we consider the notion of compact directed complete poset (acts), and investigate the interesting notion of absolute retractness for such ordered structures. As monomorphisms and embeddings for domain acts are different notions, we study absolute retractness with respect to both the class of monomorphisms and that of embed- dings for compact directed complete poset (acts). We characterize the absolutely retract compact dcpos as complete compact chains. Also, we give some examples of compact di- rected complete poset acts which are (g-)absolutely retract (with respect to embeddings) and show that completeness is not a sufficient condition for (g-)absolute retractness. Taking domains in the one hand and actions of a semigroup (automaton) on the other, as two crucial notions in mathematics as well as in computer science, we consider the notion of compact directed complete poset (acts), and investigate the interesting notion of absolute retractness for such ordered structures. As monomorphisms and embeddings for domain acts are different notions, we study absolute retractness with respect to both the class of monomorphisms and that of embed- dings for compact directed complete poset (acts). We characterize the absolutely retract compact dcpos as complete compact chains. Also, we give some examples of compact di- rected complete poset acts which are (g-)absolutely retract (with respect to embeddings) and show that completeness is not a sufficient condition for (g-)absolute retractness.
出处 《Algebra Colloquium》 SCIE CSCD 2017年第4期625-638,共14页 代数集刊(英文版)
关键词 action of a monoid directed complete poset COMPACT absolutely retract action of a monoid, directed complete poset, compact, absolutely retract
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部