期刊文献+

求解中子动力学方程的加权蒙特卡罗方法 被引量:1

Weighted Monte Carlo solution of neutron kinetics equations
下载PDF
导出
摘要 为了实现基于蒙特卡罗方法的中子动力学计算,在传统的直接蒙特卡罗动力学方法的基础上,提出了一种加权蒙特卡罗动力学方法。该方法通过引入粒子权重的概念,隐式考虑中子俘获反应和裂变反应过程中中子数目的变化,避免了模拟粒子的数目随时间的变化,降低了统计偏差,消除了程序计算过程中粒子的存库操作,提高了计算精度。基于单能点堆模型,开发了中子动力学计算程序NECP-Dandi,进行了大量数值验证与分析,包括无缓发中子、单组缓发中子、六组缓发中子、正阶跃反应性引入、负阶跃反应性引入、正脉冲反应性、负脉冲反应性和正线性反应性引入等情况。数值结果表明,相比于直接蒙特卡罗动力学方法,加权蒙特卡罗动力学方法在计算结果的精度和计算效率上有较为明显的改进,程序结构更为简洁。 The solution of time dependent neutronics equations still remains a challenging problem.A weighted Monte Carlo kinetics method(wMCk)is proposed based on traditional analog Monte Carlo kinetics method(aMCk).The"implicit capture"is introduced to avoid the problem of low efficient tallies in aMCk;the definition of particle weighting leads to a more compact simulation flow due to the elimination of stack operation to particle bank.Using this method,a code named NECP-Dandi was developed in mono-energetic point-kinetics model for numerical verification and analysis.11 test cases with different reactivity insertions were employed to verify the method.Numerical results demonstrate that wMCk is superior to aMCk in terms of accuracy,efficiency and code structure.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2018年第1期170-175,共6页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(11522544)
关键词 蒙特卡罗方法 中子动力学 直接蒙特卡罗方法 加权蒙特卡罗方法 点堆 Monte Carlo method neutron kinetics analog Monte Carlo method weighted Monte Carlo method point-core model
  • 相关文献

参考文献2

二级参考文献27

  • 1吴宜灿,李莹,卢磊,丁爱平,胡海敏,曾勤,罗月童,郑善良,黄群英,陈义学.Research and development of the automatic modeling system for Monte Carlo particle transport simulation[J].核科学与工程,2006,26(1):20-27. 被引量:58
  • 2Briesmeister J F. MCNP--a general Monte Carlo N-Particle transport code[R]. LA-12625-M, 1997.
  • 3Brown F B, Martin W R, Mosteller R D. Monte Carlo-advance and challenges[R]. LA-UR-08-05891, 2008.
  • 4O' Brien M J, Joy K I, Procassini R J, et al. Domain decomposition of a constructive solid geometry Monte Carlo transport code[R]. UCRL- CONF-409739, 2009.
  • 5Greenman G M, O'Brien M J, Procassini R J. Enhancements to the combinatorial geometry particle tracker in the mercury Monte Carlo transport code: embedded meshes and domain decomposition[R]. LLNL-CONF-411198, 2009.
  • 6Procassini R J, Cullen D E, Greenman G M, et al. Verification and validation of mercury: a modern Monte Carlo particle transport code [R]. UCRL-CONF-208667,2004.
  • 7Procassini R J, O'Brien M J, Taylor J M. Load balancing of parallel Monte Carlo transport calculations[R]. UCRL-CONF-222700, 2005.
  • 8Mo Zeyao, Zhang Aiqing, Cao Xiaolin, et al. JASMIN.. a parallel software infrastructure for scientific computing[J]. Front Comput SciChina, 2010, 4(4):480-488.
  • 9NICHOLAS M, ULAM S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44:335 341.
  • 10KIRK B L. Overview of Monte Carlo radiation transport codes [J]. Radiation Measurements, 2010, 45:1 318-1 322.

共引文献52

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部