摘要
设Ps(1≤s≤4)是互异的奇素数,D=2^tp1^a1p2^a2p3^a3p4^a4(ai=0或1,1≤i≤4,t∈Z^+)时,不定方程x^2-23y^2=1与y^2-Dz^2=25仅当D=2^t×1151(t=1,3,5,7,9)时有正整数解.
Let D=2^tp1^a1p2^a2p3^a3p4^a4 (ai=0 or 1,1≤i≤4,t∈Z^+),where ps(1≤s≤4)are distinct odd primes, the simultaneous Diophantine equations in the title has a positive integer solution only when D = 2^t × 1151 (t = 1, 3, 5, 7, 9).
出处
《数学的实践与认识》
北大核心
2018年第3期255-259,共5页
Mathematics in Practice and Theory
基金
云南省科技厅应用基础研究计划青年项目(2017FD166)
云南省科技厅应用基础研究计划青年项目(2013FD060)
关键词
整数解
公解
不定方程
同余
递归序列
integer solution
common solution
indefinite equation
Pell equation
congruence
recursive sequence