摘要
酶是活细胞产生的一类具有催化作用的有机分子.1877年,德国科学家Wilhelm Kuhne将这类分子命名为“酶”.随后,美国科学家James B.Sumner将其鉴定为一种蛋白质.天然酶具有催化效率高、底物专一、反应条件温和等特点.然而,由于酶的化学本质是蛋白质,在酸、碱、热等非生理环境中容易发生结构变化而失活.为此,科学家一直在寻求用化学合成法制备人工模拟酶,以便在非生理环境中应用.
The nanozyme is a new concept that has been included in the Encyclopedia of China. It is defined as a type of nanomaterial that possesses intrinsic enzyme-like activity. Nanozymes were first conceptualized by Chinese scientists in interdisciplinary fields of material science, chemistry, biology and medicine. Since the original work was published in Nature Nanotechnology in 2007, 2: 577-583, it has been cited over 1480 times and has drawn significant attention worldwide. To date, over 130 laboratories across 22 countries have contributed to research on nanozymes. The application of nanozymes has been extended to biology, medicine, agriculture, national defense and many other fields, and has gradually transferred from diagnosis to therapeutics of human diseases. Nanozyme research is an emerging field bridging nanotechnology and biology. By using their multi-functionality, including enzymatic activity and other specific nanoscale properties, nanozymes will likely continue to facilitate the development of state-of-the-art technologies and products to improve human health and quality of life. As we approach the 10-year anniversary of the discovery of nanozymes, I humbly accepted to organize this “nanozyme special edition”. I would like to convey my gratefulness to the editor and all the authors, who have done extraordinary amount of work for their reviews, this project would not have been possible without them.
出处
《生物化学与生物物理进展》
SCIE
CAS
CSCD
北大核心
2018年第2期101-104,共4页
Progress In Biochemistry and Biophysics