摘要
提出标量划分与整合模型,基于此模型,提出一种灵活的椭圆曲线密码标量乘的并行化处理方法。由于该方法是基于标量乘的算法操作级别,因此能在各种不同处理器数量的并行系统中实现。相对于现有的基于固定数量处理器的标量乘并行化方法,本文的并行化方法是灵活的。同时,本文提出的标量乘并行化方法最优时间复杂度可以减少到(logk)A+k D。通过实例比较,本文提出的方法的最优时间复杂度比经典的二进制方法减少了大约30%。
This paper proposes a flexible parallel method of scalar multiplication for elliptic curve cryptosystems( ECC) based on the proposed scalar partition and integration models. Focusing on parallelizing ECC scalar multiplication operations at the scalar multiplication algorithm level,the proposed method can be implemented into various parallel systems. In contrast to previous parallel scalar multiplication methods,the proposed method is flexible. Furthermore,the time complexity of the proposed parallel scalar multiplication method can be reduced to( logk) A + kD. The optimal time complexity of the proposed method is reduced about 30% compared with classic binary method by an example.
出处
《计算机与现代化》
2018年第2期71-75,共5页
Computer and Modernization
基金
广东省自然科学基金资助项目(2014A030310299)
深圳市科技计划项目(JCYJ20160415113927863
JCYJ20160307101532282
JCYJ20160527101106061)
深圳信息职业学院科研培训项目(ZY201710)
关键词
椭圆曲线密码
标量乘
并行计算
并行系统
二进制方法
elliptic curve cryptosystems
scalar multiplication
parallel computing
parallel systems
binary method