期刊文献+

基于光滑l_p范数的压缩感知图像重构算法 被引量:1

A Image Reconstruction Algorithm of Compressed Sensing Based on Smooth l_p Norm
下载PDF
导出
摘要 针对压缩感知理论中的图像重构问题,提出一种基于光滑l_p(0<p<1)范数的图像重构算法。首先,将重构问题转化为基于最小l_p范数的优化问题进行求解;其次,构造光滑函数逼近l_p范数;接着,通过离散化光滑函数的解序列来逼近最小l_p范数的最优解;最后,以Lena图像为例对算法进行了仿真研究。结果表明,相比于传统的OMP(Orthogonal Matching Pursuit)算法和IRLS(Iteratively Reweighted Least Squares)算法,该算法不仅提高了图像重构质量,而且大幅减少了重构时间。 In order to solve the problem of image reconstruction in compressed sensing theory, an image reconstructionalgorithm based on smooth lp( 0 〈p 〈 1 ) norm is proposed. Firstly, the reconstruction problem wastransformed into solving the optimization problem based on the minimum /pnorm. Secondly, the smooth functionwas constructed to approximate /pnorm. Then, the optimal solution of the lp norm was obtained by discretizingthe sequence of the smoothing function. Finally, the Lena image was taken as an example to simulate the algorithm.The results show that compared with the traditional OMP algorithm and IRLS algorithm, the quality ofimage reconstruction is improved, and the reconstruction time is greatly reduced.
作者 彭曙蓉 徐恒 毛亚珍 PENG Shu-rong;XU Heng;MAO Ya-zhen(School of Electrical & Information Engnineering, Changsha University of Science & Technology, Changsha 410 114 , China)
出处 《测控技术》 CSCD 2018年第2期7-10,共4页 Measurement & Control Technology
基金 湖南省教育厅创新平台开放基金(17K001)
关键词 压缩感知范数 图像重构 光滑函数 compressed sensing /pnorm image reconstruction smooth function
  • 相关文献

参考文献8

二级参考文献219

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2Donoho D L.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.
  • 3Candes E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequeney information[J].IEEE Trans.Inform.Theory,2006,52(2):489-509.
  • 4Candès E J,Tao T.Near-optimal signal recovery from ran-dom projections:Universal encoding strategies?[J].IEEE Trans.Inform.Theory,2006,52(12):5406-5425.
  • 5Candès E J,Wakin M B.People hearing without listen-ing:an introduction to compressive sampling[J].IEEESignal Process.Mag.,2008,25(2):21-30.
  • 6Valiollahzadeh S,Firouzi H,Babaie.Zadeh M,et al.Image Denoising Using Sparse Representations.Author manuscript,published in ICA 2009,LNCS 5441,2009.557-564.
  • 7Rauhut H,Schass K,Vandergheynst P.Compressed sens-ing and redundant dictionaries[J].IEEE Trans.on Inform.Theory,2008,54(5):2210-2219.
  • 8Shi G M,Lin J,Cheu X Y,et al.UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 9Gurbuz A C,McClellan J H,Scott Jr,W R.Compressive sensing for subsurface imaging using ground penetrating radar[J].Signal Process.,2009,89(10):1959-1972.
  • 10Jouny I.Compressed Sensing for UWB Radar Target Signature Reconstruction[C].IEEE Workshop on DSP/SPE 2009,Jan.2009.714-719.

共引文献467

同被引文献19

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部