摘要
作者同被引分析是一种通过两个相似作者之间的关系来识别特定知识领域知识结构的分析方法。本文通过作者同被引方法,利用Bibexcel、SPSS和VOSviewer分析Web of Science数据库中2001—2015年人工智能领域的相关文献,探讨15年间人工智能的发展趋势,提出促进人工智能领域发展的相关建议。
Authors and Citation Analysis (ACA) is an analytical method for identifying knowledge structures in specifc areas through the relationship between two similar authors. In this paper, we use ACA method and use Bibexcel, SPSS and VOSviewer tools to analyze the development trend of artifcial intelligence in Web of Science database from 2001 to 2015.And on this basis, some suggestions are brought forward to improve the research on artifcial intelligence.
作者
陈超群
邓三鸿
刘思远
CHEN Chaoqun;DENG Sanhong;LIU Siyuan(School of Information Management, Nanjing University, Nanjing 210023;Jiangsu Key Lab of Data Engineering and Knowledge Service, Nanjing 210023)
出处
《中国科技资源导刊》
2018年第1期57-65,共9页
China Science & Technology Resources Review
基金
中央高校业务经费重点项目"我国图书情报学科知识结构及演化动态研究"(20620140645)