期刊文献+

碰撞-渐进振动系统的亚谐振动与分岔分析 被引量:1

Subharmonic Vibrations and Bifurcations of Vibro-impact Systems with Progression
下载PDF
导出
摘要 建立了碰撞-渐进振动系统的力学模型。分析了激振器和缓冲垫发生碰撞的类型,以及滑块渐进运动的条件。给出了系统可能呈现的4种运动状态的判断条件和运动微分方程。通过二维参数分岔分析,得到系统的各类周期振动在激振频率和预压量参数平面内的存在域及其分布规律。详细分析了1/n亚谐振动的分岔过程。当激振频率增大时,由于发生周期振动的实擦边分岔、虚擦边分岔或鞍结分岔等非光滑分岔,使得1/n亚谐振动的分岔过程变得更加复杂,而且受预压量的影响比较大。 A mechanics model of the vibro-impact systems with progressive motions was established.Types of impacts between the vibration exciter and the cushion,and conditions of progressive motions of the slider were analyzed.Judgment conditions and motion equations of four probable motion states presented by the systems were put forward.Based on bifurcation analysis of two-dimensional parameters,existence regions and distribution laws of different types of periodic motions of the systems were obtained in the exciting frequencies and precompression parameter planes.Bifurcation processes of 1/n subharmonic vibrations were analyzed in detail.When the exciting frequencies increase,bifurcation processes of 1/n subharmonic vibrations become more complicated due to the occurrence of non-smooth bifurcations of the periodic motions,incuding real-grazing bifurcations,baregrazing bifurcations,or saddle-node bifurcations.Moreover,the effects of precompression are relatively large.
作者 吕小红
出处 《中国机械工程》 EI CAS CSCD 北大核心 2018年第4期417-422,428,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11462012 11672121)
关键词 碰撞振动 渐进 亚谐振动 分岔 vibro-impact progression subharmonic vibration bifurcation
  • 相关文献

参考文献6

二级参考文献78

  • 1赵文礼,周晓军.碰撞阻尼器系统的分岔、混沌与控制[J].振动工程学报,2007,20(2):161-167. 被引量:9
  • 2Tse C K, di Bernardo M. Complex behavior in switching power converter [ J ]. Proceeding of 1EEE, 2002,90 ( 5 ) : 768-781.
  • 3Luo G W, Xie J H. Codimension two bifurcation of periodic vibro-impact and chaos of a dual component system[ J]. Physical Letters A ,2003,313(4) :267-273.
  • 4di Bernardo M. Unified framework for the analysis of grazing and border-collisions in piecewise-smooth system[ J]. Physical Review Letters, 2001,86 ( 12 ) : 2553 -2556.
  • 5Dankowicz H, Zhao X. Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators [ J ]. Physica D, 2005,202 ( 3/4 ) : 238-257.
  • 6Shaw S W. A periodically forced piecewise linear oscillator [ J ]. Journal of Sound and vibration, 1983,90 ( 1 ) :129- 155.
  • 7Feng Q, He H. Modeling of the mean Poincar6 map on a class of random impact oscillators [ J ]. European Journal of Mechanics A/Solids,2003,22 ( 2 ) :267-281.
  • 8Chin W, Ott E, Nusse H E, et al. Grazing bifurcations in impact oscillators [ J ]. Physics Review E, 1994,50 (6) : 4427-4444.
  • 9Shaw S W. The dynamics of a harmonically excited system having rigid amplitude constraints[ J]. Journal of Applied Mechanics, 1985,52 (2) :453-458.
  • 10Nordmark A B. Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators [ J ]. Nonlinearity, 2001,14 ( 6 ) : 1517-1542.

共引文献38

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部