期刊文献+

基于改进支持向量回归机的污水处理厂出水总氮预测模型 被引量:7

Prediction of effluent total nitrogen concentration in a wastewater treatment plant using a particle swarm optimization-support vector regression model
原文传递
导出
摘要 在小样本数据的情况下,采用粒子群优化算法(PSO)对传统支持向量回归机(SVR)进行改进,将其应用于北京某大型污水处理厂出水总氮浓度预测上。预测结果精度对比分析表明,PSO-SVR模型预测结果平均相对误差为1.836%,决定系数为67.76%,均方根误差为0.693 9,各评价指标均优于多元线性回归模型、BP神经网络模型。因此在小样本情况下,利用PSO-SVR模型对污水处理厂出水总氮浓度进行预测是可行有效的,为应用数据驱动模型对污水处理过程进行建模模拟提供了一种新方法尝试。 A particle swarm optimization (PSO)-support vector regression (SVR) was built based on small sample and applied it to predict effluent total nitrogen concentration in a wastewater treatment plant. The analysis of prediction accuracies indicated that the mean relative error (MRE) is 1. 836% , the coefficient of determina- tion (R2) is 67.76% as well as the root mean square error (RMSE) is 0. 693 9. In addition, the accuracy of the PSO-SVR model was analyzed by comparison with the multivariable linear regression (MLR) model and the BP neural network (BP-ANN). The results indicated that the PSO-SVR model is better than MLR and BP-ANN in prediction of effluent total nitrogen concentration in a wastewater treatment plant. Therefore, it is feasible and effective to predict effluent total nitrogen concentration in a wastewater treatment plant by using PSO-SVR model, which provides the method to modeling the process of wastewater treatment.
出处 《环境工程学报》 CAS CSCD 北大核心 2018年第1期119-126,共8页 Chinese Journal of Environmental Engineering
基金 国家水体污染控制与治理科技重大专项(2014ZX07201-001)
关键词 污水处理 数据驱动模型 支持向量回归机 粒子群优化算法 wastewater treatment data-driven modeling support vector regression particle swarm optimization
  • 相关文献

参考文献15

二级参考文献175

共引文献280

同被引文献80

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部