期刊文献+

基于汉语框架语义网的篇章关系识别 被引量:4

Discourse Relation Recognition Based on Chinese FrameNet
下载PDF
导出
摘要 篇章关系识别是篇章分析中一项具有挑战性的子任务。传统的篇章关系分析主要是用篇章的局部特征对篇章关系进行分析,但是局部特征无法直接诠释篇章单元的外部语义关系,因此该文基于汉语框架语义网识别篇章关系,在框架语义层面对篇章单元进行分析。该文主要利用汉语框架语义网中的目标词,对篇章单元进行分析,从而识别出篇章关系。实验结果表明,核心目标词能更完整地表达篇章单元的核心语义,对篇章关系的识别有较好的效果。 Discourse Relation Recognition is a challenging sub-task in discourse analysis.The traditional discourse relation analysis aims to use the local feature of discourses to analyze the discourse relation.Since the local feature cannot directly explain the external semantic relation of the discourse unites,we recognize the discourse relation based on Chinese framenets and analyze it via frame semantics.In this paper,we can recognize the discourse relation by analyzing the discourse units with the targets in Chinese framenets.Experiments show that the core target can perfectly express the core semantics of discourse unites and improve the performance of discourse relation recognition.
出处 《中文信息学报》 CSCD 北大核心 2017年第6期172-179,189,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金(61373082) 国家自然科学基金(61432011 61772324 U1435212) 国家863计划(2015AA015407)
关键词 篇章关系 汉语框架语义网 篇章单元 核心目标词 discourse relation sChinese FrameNet discourse units core target
  • 相关文献

参考文献8

二级参考文献146

  • 1Hamish Cunningham, Diana Maynard, Kalina Bontcheva, et al. GATE: an Architecture for Develop- ment of Robust NLT Applications [C]//Proceedingsof ACL, 2002: 168-175.
  • 2David Ferrucci, Adam Lally. Building an Example Ap- plication with the Unstructured Information Manage- ment Architecture[J]. IBM Systems Journal, 2004,43(3): 455-475.
  • 3Steven Bird, Edward Loper. NLTK; The Natural Language Toolkit [C]//Proceedings of the ACL dem- onstration session 2004: 214-217.
  • 4Nianwen Xue. Chinese Word Segmentation as Charac- ter Tagging[J]. International Journal of Computational Linguistics and Chinese Language Processing, 2003,8 (1) : 29-48.
  • 5John Lafferty, Andrew McCallum, Fernando Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data [C]//Pro-ceedings of ICML 2001: 282-289.
  • 6张梅山,邓知龙,车万翔,等.统计与词典相结合的领域自适应中文分词[C]//第十一届全国计算语言学学术会议,2011.8.
  • 7Chris Manning, Hinrich Schtitze. Foundations of Sta- tistical Natural Language Processing[M]. MIT Press. Cambridge, MA: May, 1999.
  • 8Andrew McCallum, Dayne Freitag, Fernando Pereira. Maximum Entropy Markov Models for Information Extraction and Segmentation[C]//Proceedings of IC- ML-2000.
  • 9Vladimir Vapnik. The Nature of Statistical Learning Theory[M]. Springer-Verlag, 1995.
  • 10Guodong Zhou, Jian Su. 2002. Named entity recog- nition using an HMM-based chunk tagger[C]//Pro- ceedings of the 40th Annual Meeting of the Associa-tion of Comparative Linguistics (ACL) : 473-480.

共引文献139

同被引文献37

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部