期刊文献+

数据挖掘技术在风力发电机组故障诊断中的应用与研究 被引量:12

Data mining technology in the application and research of wind turbine fault diagnosis
原文传递
导出
摘要 为了保证风力发电机组能安全、可靠及持续的运行,必须对风力发电机组运行状态进行监测和故障预诊断。本文主要为了实现大型风电场中的风力发电机组故障进行故障诊断而开发设计,以Windows操作系统为平台,保存于SQL Server2005数据库中,利用Matlab的数据挖掘工具箱中生成了决策树规则,用SQL Server2005数据挖掘工具箱中生成了关联规则算法的规则,既能对紧急故障进行快速判定故障种类、故障原因、故障部件等诊断;又能实现对一般故障进行全面而又准确的诊断。 In order to ensure the safe ,reliable and continuous operation of the WTGS( the Wind Generator), it is necessary to monitor the operation status of the WTGS( the Wind Generator)and the pre-diagnosis of the fault. In order to realize the fault diagnosis of wind turbines in large-scale wind farms, the Windows operating system is used as a platform and stored in the SQL Server2005 database. The decision tree rules are generated by using the data mining toolbox of Matlab. SQL Server2005 data mining toolbox generated rules of association rules algorithm, both on the emergency failure to quickly determine the type of failure, fault reasons, faulty parts and other diagnostics;but also to achieve a comprehensive and accurate fault diagnosis.
出处 《自动化与仪器仪表》 2018年第2期13-15,共3页 Automation & Instrumentation
关键词 风力发电机组 故障诊断 故障特征 决策树算法 关联规则算法 故障规则库 the wtgs fault diagnosis fault characteristic decision tree algorithm association rules algorithm fault rule library
  • 相关文献

参考文献15

二级参考文献136

共引文献384

同被引文献66

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部