期刊文献+

基于高斯过程回归的变形智能预测模型及应用 被引量:14

Deformation Intelligent Prediction Model Based on Gaussian Process Regressionand Application
原文传递
导出
摘要 岩体或建构筑物的变形通常具有复杂性和非线性等特性,一般的回归模型难以精确地进行回归预测,应用高斯过程回归理论对变形监测数据呈现出的非线性特征进行时间序列分析。考虑到监测数据的不断更新和累积,以及超参数与样本集的适应性,首先研究了"递进-截尾式"超参数自动更新模式和训练样本集的选择方法;在此基础上构建了以时间作为输入项的高斯过程回归变形智能预测模型(GPR-TIPM);将该模型应用于矿山边坡监测点非线性时间序列分析中,通过分析变形趋势,最终采用Matérn 32和平方指数协方差函数相加的方式进行核函数组合。实验结果表明,采用组合核函数的预测性能较单一核函数有所改善,该方法提高了模型的泛化能力,GPR-TIPM模型在短期内的预测效果较理想。 The deformation of building structures or rock mass usually has the features of complexity and nonlinearity that the general regression model cannot accurately predict.In this paper,gaussian process regression(GPR)theory is applied in time series analysis of nonlinear deformation monitoring data.Considering the unceasing updates and massive accumulation of monitoring data,the hyper-parameter and the adaptability of sample set,a "progressive^truncation type"hyper-parameter automatic update mode and selection method for training sample set was developed.On this basis,a GPR time-driven deformation intelligent prediction model(GPR-TIPM)was constructed.This model was applied to the nonlinear time series analysis of monitoring points on a mine slope.By analyzing the deformation trend,a composite kernel optimization method including the"Matérn32"and square exponential covariance kernel function is proposed.The experimental results showed that the prediction performance of the combined kernel function is better than that of the single kernel function,and improved the generalization ability of the model The prediction effect of GPR-TIPM model is better in the short term.
作者 王建民 张锦
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2018年第2期248-254,共7页 Geomatics and Information Science of Wuhan University
基金 山西省自然科学基金(201701D121014) 国家自然科学基金(41371373)~~
关键词 变形监测 高斯过程回归 智能预测 时间序列 矿山边坡 deformation monitoring gaussian process regression intelligent predict time series mineslope
  • 相关文献

参考文献10

二级参考文献122

共引文献320

同被引文献144

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部