期刊文献+

Ladyzhenskaya流体力学方程组的确定模与确定结点个数估计

Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model
下载PDF
导出
摘要 论文给出了二维有界区域上Ladyzhenskaya流体力学方程组的确定模与确定结点的个数估计.结果表明若该方程组的任意两个弱解的前有限个傅立叶模有相同的渐近行为,则这两个解就具有相同的渐近行为;若该方程组的任意两个强解在有限个空间中的点上有相同的渐近行为,则这两个解几乎在整个空间上具有相同的渐近行为. This article estimates the finite number of determining modes and determining nodes for the fluid flow of Ladyzhenskaya model on two-dimensional bounded smooth domains. The finite number of determining modes implies that the solutions of the addressed fluids are determined completely by their first finite number of Fourier modes. The determining nodes reveals that whenever two different solutions of the fluid have the same asymptotic behavior at finite number of points in the physical space, then they also possess the same asymptotic behavior at almost everywhere points of the physical space.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2018年第1期71-82,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11271290 51279202) 浙江省自然科学基金(LY17A010011)~~
关键词 Ladyzhenskaya流体力学方程组 确定模 确定结点 渐近行为. Ladyzhenskaya model Determining modes Determining nodes Asymptotic behavior.
  • 相关文献

参考文献2

二级参考文献51

  • 1DONG BoQing,JIANG Wei.On the decay of higher order derivatives of solutions to Ladyzhenskaya model for incompressible viscous flows[J].Science China Mathematics,2008,51(5):925-934. 被引量:6
  • 2Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.
  • 3Babin, A. V. and Vishik, M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
  • 4Bardina, J., Ferziger, J. H. and Reynolds, W. C., Improved subgrid scale models for large eddy simulation, 13th AIAA Fluid and Plasma Dynamics Conference, 1980, 80-1357.
  • 5Berselli, L. C., Iliescu, T. and Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, Springer-Verlag, New York, 2006.
  • 6Cao, Y. P., Lunasin, E. M. and Titi, E. S., Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4(4), 2006, 823-848.
  • 7Celebi, A. O., Kalantarov, V. K. and Polar, M., Attractors for the generalized Benjamin-Bona-Mahony equation, J. Diff. Eqs., 157(2), 1999, 439-451.
  • 8Chueshov, I. D., Theory of functionals that uniquely determine the asymptotic dynamics of infinite- dimensional dissipative systems, Russ. Math. Sur., 53(4), 1998, 731-776.
  • 9Cockburn, B., Jones D. A. and Titi, E. S., Determining degrees of freedom for nonlinear dissipative equations, CR Acad. Sci. Paris, 321(5), 1995, 563-568.
  • 10Cockburn, B., Jones D. A. and Titi, E. S., Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp., 66, 1997, 1073-1087.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部