期刊文献+

工业纯铜极薄带轧件的微尺度效应 被引量:3

Micro-scale effect of CP-copper ultrathin strip
原文传递
导出
摘要 利用自主研发的微型异步轧机,制备出工业纯铜极薄带材。通过拉伸试验、微观硬度测试、显微组织观察和XRD检测研究了极薄带的机械性能随厚度的变化规律。结果表明,极薄带抗拉强度和硬度值随样品厚度减小,呈现出先增大后减小的规律,即出现微尺度效应,且其位错密度值亦出现先增大后减小的规律。原始晶粒在经过深度塑性变形后,前期的位错塞积导致加工硬化,当极薄带的厚度小于某极限值后,由于比表面积增加,剧烈塑性变形形成的位错容易移动至晶界处消失,此时位错的削减速率大于增殖速率,材料发生软化。 An independently developed micro asymmetrical mill was applied to produce ultra-thin strip of CP-copper (commercially purecopper). Tensile and micro hardness test were carried out on roiled CP-eopper foil with different thickness to study the mechanical propertieschanging rule with thickness, it was founded that the ultimate tensile strength and micro hardness increased t^rst and lhen decreased withdecreasing thickness, ealled micro-scale effect. The dislocation density was calculated based on XRD (X-ray diffraction) results. The resultsshow that the dislocation density increases first, then decreases with the thickness of uhrathin strips decreases. After deep plasticdeformation, the early dislocation pile-up causes the strain-hardening in the original grains. When the thickness of the exlremcly thitl beh issmaller than certain limit value, because the specific surface area increases, the dislocations formed by the intense plastic detormationdisappear by moving to the grain boundary. At this time the dislocation reduction rate is greater than the multiplication rate, the the CP-copper softens.
出处 《金属热处理》 CAS CSCD 北大核心 2018年第2期96-100,共5页 Heat Treatment of Metals
基金 国家自然科学基金(51374069) 辽宁省博士启动基金(20131062) 辽宁省大学生创新创业项目(201510148055)
关键词 异步轧制 极薄带 微尺度效应 位错密度 asymmetrical rolling ultrathin strip size effect dislocation density
  • 相关文献

参考文献6

二级参考文献50

  • 1单德彬,郭斌,王春举,周健,袁林.微塑性成形技术的研究进展[J].材料科学与工艺,2004,12(5):449-453. 被引量:19
  • 2张广平,高岛和希,肥後矢吉.微米尺寸不锈钢的形变与疲劳行为的尺寸效应[J].金属学报,2005,41(4):337-341. 被引量:11
  • 3陈善华,吴杰,管登高,邹丛沛,邱绍宇.金属材料晶界工程研究进展[J].金属热处理,2006,31(3):1-6. 被引量:19
  • 4Jinyu GUO Ke WANG Lei LU.Tensile Properties of Cu with Deformation Twins Induced by SMAT[J].Journal of Materials Science & Technology,2006,22(6):789-792. 被引量:6
  • 5Coble R L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys., 1963, 34:1 679- 1 782.
  • 6Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature. Nature, 1987,330:556 - 558.
  • 7Chokshi A H, Rosen A, Karch J et al. On the validity of the Hall-Petch relationship on nanocrystalline materials.Scr. Metall., 1989, 23:1 679- 1 684.
  • 8Schiotz J, Tolla F D Di, Jacobsoen K W. Softening of nano crystalline metals at very small grain sizes. Nature, 1998, 391:561 - 563.
  • 9KochCC, MorrisDG, LuK et al. Ductility of nanostructured materials. MRS Bulletin, 1999, 24:54 - 58.
  • 10McFadden S X et al. Low- temperature superplasticity in nanostructured nickel and metal alloys. Nature, 1999, 398:684 - 686.

共引文献52

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部