期刊文献+

正火温度对G115钢组织及650℃强度的影响 被引量:8

Effect of normalizing temperature on microstructure of G115 steel and strength at 650 ℃
原文传递
导出
摘要 在1030-1120℃温度区间,对G115钢进行不同温度的正火处理随后进行780℃×3 h回火,并对其进行显微组织和650℃拉伸性能研究。拉伸结果表明:随正火温度的升高,650℃强度呈现“M”形变化特征。组织观察发现,1030℃时,晶粒重结晶未完全完成;随正火温度由1065℃升至1095℃,G115钢原奥氏体平均晶粒尺寸由38.40μm,减小至34.45μm左右,在1075℃至1095℃出现“平台”;当温度升至1120℃时,原奥氏体平均晶粒尺寸为67.64μm,长大明显。对不同正火温度试样扫描电镜(SEM)的背散射电子(BSE)观察,均发现较多的富W和Fe元素的Laves相。Laves相的尺寸和尺寸超过1000 nm Laves相所占的比例呈现“W”形变化特征。650℃强度随正火温度的变化规律主要与大尺寸的Laves相相关。 Normalizing treatment at different temperature from 1065 ℃ to 1120 ℃ were carried out G115 steel, then followed by tempering at780 ℃ for 3 h. Microstructure and 650 ℃ tensile test of the Gl15 steel with different normalization were also studied. Tensile test resultsshow "M"-shaped change. The microstructure observation shows that with the increase of normalizing temperature, the prior austenite grain(PAG) size of the Gl15 steel decreases from 38.40 μm at 1065 ℃ to a platform between 1075 ℃ to 1095 ℃, which is about 34.45 p, ul,and then it increased obviously to 67.64 μm at 1120 ℃. Laves phases with rich tungsten and iron are also observed by BSE after normalizingat different temperatures. The size and percentage more than 1000 nm of Laves phase show " W"- shaped change characteristics afternormalizing at different temperatures. The change of 650 ℃ strength with increasing normalizing temperature is mainly associated with thelarge Laves phase.
出处 《金属热处理》 CAS CSCD 北大核心 2018年第2期173-177,共5页 Heat Treatment of Metals
基金 重点基础材料提升与产业化重点专项(2017YFB0305205)
关键词 正火处理 G115钢 LAVES相 原奥氏体晶粒尺寸 高温强度 normalization Gl15 steel Laves phase prior austenite grain (PAG) size high temperature strength
  • 相关文献

参考文献3

二级参考文献14

  • 1曹金荣,刘正东,程世长,杨钢,谢建新.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007,43(1):35-40. 被引量:47
  • 2LIU Rong-zao. Strengthening Mechanism of Low Alloying Heat Resistant Steel [M]. Beijing: Metallurgical Industry Press, 1981.
  • 3Hald J. Microstructure and Long-Term Creep Properties of 9-12% Cr Steels [J]. International Journal of Pressure Vessels and Piping, 2008, 85: 30.
  • 4Yamacla Katsumi, Igarashi Masaaki, Muneki Seiichi, etc. Creep Properties Affected by Morphology of MX in High-Cr Ferritic Steels [J]. ISIJ International, 2001, 41(Supplement) : 116.
  • 5Mats Hattestrand, Martin Schwind, Hans-Olof Andron. Microanalysis of Two Creep Resistant 9-12% Chromium Steels [J]. Malerials Science and Engineering A, 1998, 250: 27.
  • 6Hamada Kazushi, Tokuno Kazushige, Tomita Yukio, et al. Effects of Precipitate Shape on High Temperature Strength of Modified 9Cr-1Mo Steels [J]. ISIJ International, 1995, 35 (1) : 86.
  • 7Maruyama Kouichi, Sawada Kota, Koike Jun-ichi. Strengthening Mechanisms of Creep Resistant Tempered Martensitie Steel [J]. ISIJ International, 2001, 41(6): 641.
  • 8YONG Qi long. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006.
  • 9Yuiehi Futamura, Toshihiro Tsuchiyama, Setsuo Takaki. Strengthening Mechanism of Cu Bearing Heat Resistant Martensitic Steels [J]. ISIJ International, 2001, ,41(Supplement) : 106.
  • 10Abe Fujio. Creep Rates and Strengthening Mechanisms in Tungsten Strengthened 9Cr Steels [J]. Materials Science and Engineering, 2001, A319/321: 770.

共引文献22

同被引文献28

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部