期刊文献+

新型电极材料Li_5Cr_9Ti_4O_(24)的制备及其性能

Preparation and Performance of New Type Li_5Cr_9Ti_4O_(24) Electrode Material
下载PDF
导出
摘要 采用溶胶凝胶法合成一种新型的Li_5Cr_9Ti_4O_(24)钛酸盐材料,用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、循环伏安(CV)、充放电测试和阻抗测试等方法研究了样品的结构和电化学性能。结果表明,Li_5Cr_9Ti_4O_(24)粒径大小约为100~200 nm,具有同LiCrTiO_4相似的晶格结构;循环伏安曲线表在1.227 V/1.772 V和1.334 V/1.761 V处出现氧化还原峰;在不同倍率下充放电时,Li_5Cr_9Ti_4O_(24)有较好的放电比容量和倍率性能,大倍率充放电曲线表明Li_5Cr_9Ti_4O_(24)材料具有很高的循环稳定性;阻抗图表明循环后的Li_5Cr_9Ti_4O_(24)材料生成SEI膜。 A new titanate material Li5 Cr9 Ti4 024 was prepared by a simple sol-gel method. The structure and electrochemical performance of the materials were investigated by X-ray diffractometry (XRD) , scanning electron microscope (SEM) , cyclic voltammetry (CV) , charge-discharge tests and electro chemical impedance spectroscopy (EIS). The results show that Li5CrgTi4024 material has similar lattice structure with LiCrTiO4 and the particle size of LisCr9Ti4024 material is about 100--200 nm. Cyclic vohammetry curves indicate that there are reversible redox peaks at 1. 227 V/I. 772 V and 1. 334 V/1.761 V. Charge-discharge tests exhibit that the LisCr9Ti4024 material has good specific discharge capacity and rate capability at different rates. Charge-discharge curves at high rates show that LisCrgTi4024 material has high cycling stability. EIS patterns show that the solid electrolyte interphase (SEI) film on the surface of LisCr9Ti4024 material can be found after cycling.
出处 《有色金属工程》 CAS CSCD 北大核心 2018年第1期32-35,共4页 Nonferrous Metals Engineering
基金 安徽工业大学研究生创新研究基金项目(2016015) 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016066)
关键词 Li5Cr9Ti4O24 溶胶凝胶法 负极材料 锂离子电池 Li5Cr9Ti4024 sol-gel method anode material lithium ion battery
  • 相关文献

参考文献3

二级参考文献29

  • 1Su D, Wang F, Ma C, et al. Engineering nano-composite Li4 Ti5 O12 anodes via scanning electron-probe fabrication [J]. Nano Energy, 2013, 2(3): 343-350.
  • 2Pohjalainen E, Kallioinen J, Kallio T. Comparative study of carbon free and carbon containing Li4 Tis O12 electrodes [J]. Journal of Power Sources, 2015, 279: 481-486.
  • 3Sun X, Radovanovic P V, Cui B. Advances in spinel Li4TisO1z anode materials for lithium-ion batteries [ J ] . New Journal of Chemistry, 2015, 39: 38-63.
  • 4Li W, Li X, Chen M, et al. A1F3 modification to suppress the gas generation of Li4 Ti5 O12 anode battery [ J ] . Electrochimica Acta, 2014, 139: 104-110.
  • 5Yi T-F, Shu J, Zhu Y-R, et al. High-performance Li4Tis_VO12 (0 < x < 0. 3) as an anode material for secondary lithium-ion battery [ J ]. Electrochimica Acta, 2009, 54(28): 7464-7470.
  • 6Borghols W J H, Wagemaker M, Lafont U, et al. Size effects in the Li4+x Ti5 O12 spinel [ J] . Journal of the American Chemical Society, 2009, 131 ( 49 ): 17786-17792.
  • 7Liu Z, Sun L, Yang W, et al. The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5 O12 as anode material for lithium ion battery [ J]. Solid State Sciences, 2015, 44 : 39-44.
  • 8Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
  • 9Ning G, Fan Z, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes[J]. Chemical Communications, 2011, 47(21): 5976-5978.
  • 10Cao X, Shi Y, Shi W, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部