期刊文献+

用户频繁通信关系的并行挖掘算法研究 被引量:1

Parallel Algorithm for Mining User Frequent Communication Relationship
下载PDF
导出
摘要 随着移动通信技术和互联网的飞速发展,移动通信设备已经成为大多数人随身携带的工具,这些设备之间因互相通信而产生的数据构成了通信网络。文中提出了一种针对海量通信数据的频繁通信子图并行挖掘算法PMFCS。该算法在频繁项目集挖掘思想和子图连接规则的基础上,利用并行计算框架Spark将所有的图以边为单位分布到各个计算节点,在各个节点统计1阶候选频繁子图,再通过汇总候选子图得到1阶频繁子图。PMFCS算法通过迭代地连接k-1阶子图和1阶子图生成k阶候选子图,再计算k阶候选子图的频繁度,直至k阶频繁子图集合为空集。实验结果表明,该算法可以快速、有效地解决频繁通信关系的挖掘问题。 With the rapid development of mobile communication technology and Internet,mobile communication equipment has become a portable tool for most people.A parallel algorithm PMFCS was proposed for mining frequent communication sub-graph of mass communication data.The algorithm is based on the Apriori algorithm and sub-graph connect principle.It uses Spark to distribute all the edges to each computing node,then the 1 th-order frequent candidate sub-graphs are distributed to each node,the 1 th-order frequent candidate sub-graphs are counted at each node,and the1 th-order sub-graphs are got by summarizing candidate sub-graphs.PMFCS iteratively connects the(k-1)th-order subgraph and the 1 th-order sub-graph to generate kth-order candidate sub-graphs.Subsequently,the algorithm terminates until the kth-order frequent sub-graph set is empty.The experimental results show that PMFCS can mine the frequent communication sub-graph efficiently and quickly.
出处 《计算机科学》 CSCD 北大核心 2018年第2期103-108,共6页 Computer Science
基金 国家自然科学基金项目:云计算环境下顾及用户关系的手机用户时空轨迹模式挖掘方法研究(41471371)资助
关键词 通信网络 频繁子图 频繁通信关系 Communication network Frequent sub-graph Frequent communication relationship
  • 相关文献

参考文献2

二级参考文献29

  • 1Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. VLDB1994, Santiago,Chile, 1994.
  • 2Heikki Mannila, et al. Search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery,1997, 1(3): 241~258.
  • 3Jong Soo Park, et al. An effective Hash based algorithm for mining association rules. SIGMOD1995, San Jose, USA, 1995.
  • 4Sergey Brin, et al. Dynamic itemset counting and implication rules for market basket data. SIGMOD1997, Tucson, USA,1997.
  • 5Ramesh C. Agarwal, et al. Depth first generation of long patterns, KDD 2000, Boston, USA, 2000.
  • 6Ramesh C. Agarwal, et al. A tree projection algorithm for generation of frequent itemsets. J. of Parallel and Distributed Computing, 2001, 61(3): 350~371.
  • 7Jiawei Han, Jian Pei, Yiwen Yin. Mining frequent patterns without candidate generation. SIGMOD2000, Dallas, USA, 2000.
  • 8J. Pei, et al.. H-Mine: Hyper-structure mining of frequent patterns in large databases. ICDM'01, San Jose, CA, 2001.
  • 9Mike Perkowitz, Oren Etzioni. Adaptive sites: Automatically learning from user access patterns. WWW' 97, Santa Clara, 1997.
  • 10J. Pei, et al.. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. ICDE'01, Heidelberg, 2001.

共引文献45

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部