期刊文献+

基于进化谱分方法的动态社团检测 被引量:2

Dynamic Community Detection Based on Evolutionary Spectral Method
下载PDF
导出
摘要 为了有效地分析动态网络中的社团结构功能和特性,在进化时间平滑框架下基于进化聚类方法对模块密度函数和否定平均关联函数进行了优化,论证了理论可行性;在此基础上提出了检测动态网络社团结构的进化谱分算法,并对两类算法进行了详细的谱分分析。分别在计算机合成的动态网络以及真实网络中检验了所提算法的准确性和有效性,并将其与其他算法进行对比。实验结果表明,所提算法对动态网络中的社团检测仍有很高的准确性和有效性。 In order to effectively analyze the function and characteristics of the community structure in the dynamic network,the module density function and the negative average correlation function were optimized based on the evolutionary clustering algorithm under the evolutionary time smoothing framework,and the theoretical feasibility was demonstrated.The evolution spectrum algorithm was proposed based on community structure of the dynamic network.The accuracy and effectiveness of the proposed algorithm was verified and compared with other algorithms in the computer synthesis and real dynamic network respectively.The experimental results show that the proposed algorithm is still very accurate and effective in the community detection of dynamic network.
出处 《计算机科学》 CSCD 北大核心 2018年第2期171-174,共4页 Computer Science
基金 国家自然科学基金(61502363) 陕西省教育厅科学研究计划重点项目(16JZ040)资助
关键词 动态网络 社团结构 模块密度 否定平均关联 进化谱分 Dynamic network Community structure Module density Negative average correlation Evolution spectrum
  • 相关文献

参考文献3

二级参考文献37

  • 1Brabasi A I., Albert R. Emergence of scaling in random nel- works[J]. Science, 1999. 286(5439) : 509 -512.
  • 2Newman M E J. Fast algorilhm for detecting community struc- ture in networks[J]. Phys. Rev. E, 2004,69:066133.
  • 3Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proc. Natl. Acad. Sci, 2002, 99 (12): 7821-7826.
  • 4Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Phys. Rev. E, 2004,69:026113.
  • 5Li H J, Zhang X S. Analysis of stability of community structure across multiple hierarchical levels[J]. Europhys. Lett., 2013, 103 : 58002.
  • 6Li H J,Wang Y, Wu I. Y, et al. Community structure detection based on potts model and spectral characterization[J]. Euro phys. Lett. , 2012,97 : 48005.
  • 7Li H J,Wang Y,Wu L Y,et al. Potts model based on a Markov process computation solves the community structure problem ef- fectively[J]. Phys. Rev. E, 2012,86 : 016109.
  • 8Muff S, Rao F, Caflisch A. Local modularity measure for net- work clusterizations[J]. Phys. Rev. E, 2005,72 (5) : 056107.
  • 9Gregory S. Finding Overlapping Communities Using Disjoint Community Detection Algorithms[M]//Complex Networks. Springer Berlin Heidelberg, 2009 = 47-61.
  • 10Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society FJT. Nature, 2005,435 : 814-818.

共引文献3

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部