期刊文献+

基于卷积神经网络的多人行为识别方法 被引量:5

Multi-person Behavior Recognition Method Based on Convolutional Neural Networks
下载PDF
导出
摘要 为了解决多人行为识别中人物角色多且难以区分、图片增加的特征维数难以表达和学习以及行为背景复杂且容易产生干扰等问题,提出了一种基于卷积神经网络的多人行为识别方法。考虑到多人行为识别的复杂性,选择较为容易的两人交互行为作为研究对象,对实验中需要的图像数据库进行了初步的收集与预处理;然后选用在特征提取中不受拍摄角度、光照强度影响的Dense-sift算法来对原始图像进行初步的特征提取。由于人体行为图片相对手写数字图片更为复杂,因此为了使该网络能够很好地识别人体行为,针对该网络在其输入、网络层数、滤波器核数、学习率、输出等方面进行了修改。实验结果表明,提出的方法对拳击、拥抱、接吻3类交互行为的识别是有效的。 In order to solve the problems in multi-person behavior recognition,for example,it is difficult to distinguish many characters,it is difficult to express and learn increased feature dimension of image,the behavior background is complex and it is easy to cause interference,this paper proposed a method of multiplayer behavior recognition based on convolutional neural network.At first,considering the complexity of multi-person behavior recognition,the simple twoperson interactive behavior is choosen as the research object and the picture database is collected.Then,because multiplayer behavior recognition has complicated background and many features in the recognition progress,a method using the Dense-sift algorithm for feature pretreatment mode is proposed.Against the complexity of the multiplayer behavior recognition,this network makes various modifications,such as input dimensions which is expanded to include layer convolution,convolution kernel increasing,output reduction,etc.Experimental results show that the proposed method can recognize simple multi-person behavior recognition,such as boxing,hug and kissing effectively.
出处 《计算机科学》 CSCD 北大核心 2018年第2期306-311,321,共7页 Computer Science
关键词 多人行为识别 卷积神经网络 Dense-sift特征提取 Multi-person behavior recognition Convolutional neural network Dense-sift feature extraction
  • 相关文献

参考文献3

二级参考文献33

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3仵建宁,郭宝龙,冯宗哲.一种基于兴趣点匹配的图像拼接方法[J].计算机应用,2006,26(3):610-612. 被引量:32
  • 4廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 5Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 6LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 7Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 8Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 9Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 10Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.

共引文献210

同被引文献36

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部