期刊文献+

视频前景提取算法研究 被引量:3

Research on Video Foreground Extraction Algorithm
下载PDF
导出
摘要 为了改善常用视频前景提取算法提取到的前景目标存在噪点、空洞,以及边缘不够平滑等缺点,提出对提取到的前景目标图片先进行中值滤波去除噪声与背景波动的干扰,再对图片进行开运算,以减少目标空洞并平滑目标边缘的改进方法。在静态背景下选用单高斯模型和RPCA方法、在动态背景下选用混合高斯模型方法,并加上提出的改进方法进行对比试验。实验结果表明,提出的方法能很好地解决常用算法存在的上述问题,充分证明了该方法的有效性。 In order to improve the common video foreground extraction algorithm to extract the prospects of the target there is noise,empty,the edge is not smooth enough shortcomings.We proposed to extract the foreground target image first median filter to remove noise and background fluctuations,and then open the image to reduce the target hole and smooth the target edge of the improved method.The experimental results show that we choose the single Gaussian model and the RPCA method in the static background,and use the mixed Gaussian model method in the dynamic background.The experiment is carried out with the improved method.The noise reduction is reduced,and relatively smooth.The conclusion is that the proposed method can solve the above problems of the commonly used algorithm and prove the validity of the method.
作者 李键 丁学明
出处 《软件导刊》 2018年第2期53-55,59,共4页 Software Guide
关键词 视频前景提取 开运算 中值滤波 video foreground extraction open operation median filter
  • 相关文献

参考文献1

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部