摘要
图G的b-染色是一个正常顶点染色,且在每两个色类之间至少存在一条边.图G的b-染色数是最大的整数k,满足用k种颜色能对G进行b-染色,记为b(G).一个图G称为b-连续的当且仅当对于每个正整数k,χ(G)≤k≤b(G),图G存在一个(k)b-染色.本文根据Corona图的结构性质,通过设计具体染色方案的方法,证明了一些特殊Corona图的b-连续性.
The b-coloring of a graph G is a proper vertex coloring, in which every two color classes exists at least one edge. The b-chromatic number of a graph G is the largest integer k such that G admits a b-coloring with k colors. A graph G is said to be b-continuity if and only if for every integer k, χ(G) ≤ k ≤ b(G), there exists a b-coloring with k colors. In this paper, the b-continuity of some special Corona graphs is proved by designing the specific coloring scheme according to the structural properties of Corona graphs.
出处
《工程数学学报》
CSCD
北大核心
2018年第1期69-78,共10页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(61472058)~~