期刊文献+

分数阶电报方程的Chebyshev多项式数值解法研究 被引量:2

Research of Numerical Methods for Solving Fractional-order Telegraph Equations Based on Chebyshev Polynomials
下载PDF
导出
摘要 分数阶电报方程作为通信工程中的一类重要方程,在实际应用中往往很难求得解析解,因而对其进行数值求解就显得至关重要.为了求得分数阶电报方程的数值解,本文借助Chebyshev多项式函数构造相应的微分算子矩阵,并结合Tau方法将待求方程转化为非线性代数方程组,然后对该方程组进行数值离散求解,最后给出的数值算例也验证了该方法的可行性及有效性. Fractional-order telegraph equation is regarded as one of most important equations in communication engineering, which is hard to obtain the analytical solution, so it is crucial to study the numerical methods. In order to obtain the numerical solutions of fractionalorder telegraph equations, this study derives the corresponding differential operational matrix through Chebyshev polynomials. Furthermore, the nonlinear telegraph equation is transformed into the system of algebra equations with known coefficients. Then, the numerical solutions can be obtained by solving the system. Lastly, the numerical example is proposed to verify the feasibility and effectiveness.
出处 《工程数学学报》 CSCD 北大核心 2018年第1期79-87,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(61371062) 太原科技大学博士后科研基金(20152034) 太原科技大学博士启动基金(20122054)~~
关键词 CHEBYSHEV多项式 分数阶电报方程 数值解 Tau方法 Chebyshev polynomials fractional-order telegraph equations numerical solutions Tau method
  • 相关文献

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部