摘要
长期以来,在森林群落相似性比较研究中应用最为广泛的Jaccard相似性系数,由于其计算过程只顾及到"共有物种",却没有考虑到森林群落中广泛存在的"优势种"与"稀有种"的差别,从而导致其计算结果难以客观地反映森林群落间的真实相似程度。为此,笔者提出了一种建立在"物种相对多度"基础上的全新的计算方式,以解决相似森林群落类型的归并问题。
For a long time, "Jaccard similarity coefficient" has been widely used in the similarity comparison among different forest communities. But this calculation method only paid attention to "common species" and ignored the differences between "dominant species" and "rare species" that extensively existed in forest communities. So the results based on this method could not objectively reveal the true similarity among different forest communities. For this reason, a new calculation method based on "relative abundance of species" was put forward so as to provide a solution for merging of similar forest communities.
出处
《安徽林业科技》
2018年第1期12-14,共3页
Anhui Forestry Science and Technology
基金
安徽省黄山森林生态系统定位研究站建设项目
关键词
森林群落
相似性系数
天然林
Forest communities
Similarity coefficient
Natural forests