期刊文献+

双层优化的激光雷达点云场景分割方法 被引量:6

Bilevel Optimization for Scene Segmentation of LiDAR Point Cloud
下载PDF
导出
摘要 对激光雷达扫描的非结构化点云进行分割处理,是进行数据组织、重构和信息提取的重要步骤。本文根据点云表面的局部可微的性质,提出了一种递进形式的双层优化分割算法。首先在黎曼几何框架下计算点的拓扑关系和距离度量特性,以k均值聚类的方法获得过分割体素,作为底层分割结果。然后,将点云的体素模式化为节点,构建最小生成树,提取节点的高级特征信息,利用图优化得到对点云细节自适应的区域分割效果。通过真实数据进行验证,并与现有方法比较,证明所提算法的可行性和先进性。 The segmentation of point clouds obtained by light detection and ranging(LiDAR)systems is a critical step for many tasks,such as data organization,reconstruction and information extraction.In this paper,we propose a bilevel progressive optimization algorithm based on the local differentiability.First,we define the topological relation and distance metric of points in the framework of Riemannian geometry,and in the pointbased level using k-means method generates over-segmentation results,e.g.super voxels.Then these voxels are formulated as nodes which consist a minimal spanning tree.High level features are extracted from voxel structures,and a graph-based optimization method is designed to yield the final adaptive segmentation results.The implementation experiments on real data demonstrate that our method is efficient and superior to state-of-the-art methods.
出处 《测绘学报》 EI CSCD 北大核心 2018年第2期269-274,共6页 Acta Geodaetica et Cartographica Sinica
基金 江苏省自然科学基金(BK20170781)~~
关键词 点云分割 黎曼几何 超体素 最小生成树 特征提取 point cloud segmentation Riemannian geometry super voxel minimal spanning tree feature extraction
  • 相关文献

参考文献4

二级参考文献23

  • 1张齐勇,岑敏仪,周国清,杨晓云.城区LiDAR点云数据的树木提取[J].测绘学报,2009,38(4):330-335. 被引量:32
  • 2左建章,关艳玲,朱强.大范围三维城市立体景观建模系统的研究[J].测绘科学,2005,30(2):22-24. 被引量:24
  • 3黄建军,唐亮,谢维信.航空影像中立交桥的自动检测[J].中国体视学与图像分析,2004,9(1):41-46. 被引量:2
  • 4卢秀山,黄磊.基于激光扫描数据的建筑物信息格网化提取方法[J].武汉大学学报(信息科学版),2007,32(10):852-855. 被引量:38
  • 5Yao Jian,Ruggeri M R,Taddei P,et al. Automatic Scan Registration Using 3D Linear and Planar Fea- tures[J]. 3D Reaserch,2010,1(3) : 1-18.
  • 6Sampath A, Shan J. Segmentation and Reconstruc- tion of Polyhedral Building Roofs from Aerial Lidar Point Clouds[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(3) : 1 554-1 567.
  • 7Pathak K, Vaskevicius N. Fast 3D Mapping by Matching Planes Extracted from Range Sensor Point-Clouds [C]. IEEE/RSJ International Confer- ence on InteLligent Robots and systems, St. Louis, USA, 2009.
  • 8Pu S, Vosselman G. Automatic Extraction of Build- ing Features From Terrestrial Laser Scanning[C]. International Archives of the Photogrammetry, Re-mote Sensing and Saptial Information Sciences, Dresden,Germany, 2006.
  • 9Kotthauser T, Mertsching B. Triangulation-Based Plane Extraction for 3D Point Clouds[C]. ICIRA 2012, Montreal, Canada, 2012.
  • 10Biosca J M,Lerma J L. Unsupervised Robust Planar Segmentation of Terrestrial Laser Scanner Point Clouds Based on Fuzzy Clustering Methods[J]. IS- PRS Journal of Photogrammetry and Remote Sens- ing, 2008,63(1): 84-98.

共引文献65

同被引文献56

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部