摘要
研究一类非一致扩张系统中几乎可加势商的"发散集"的Hausdorff维数谱的重分形分析.利用拼接n-级Bernoulli测度和构造Moran集的方法,证明在该系统中几乎可加势商的"发散集"的Hausdorff维数具有"择一性".
We discussed the multifractal analysis on the divergent set for the ratio of almost additive potentials in a class of one dimensional non-uniformly expanding systems and proved that the divergent set carried full Hausdorff dimension unless it is empty.
出处
《湖北大学学报(自然科学版)》
CAS
2018年第2期200-208,共9页
Journal of Hubei University:Natural Science
基金
河南省高校重点科研项目(18A110007)资助
关键词
发散集
几乎可加势
MORAN集
非一致扩张
divergent set
almost additive potentials
Moran set
non-uniformly expanding