期刊文献+

LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES 被引量:5

下载PDF
导出
摘要 Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn). Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).
出处 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期1-33,共33页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(11571039 and 11671185) supported by the National Natural Science Foundation of China(11471042)
分类号 O [理学]
  • 相关文献

参考文献4

二级参考文献49

  • 1Loukas GRAFAKOS.Maximal function characterizations of Hardy spaces on RD-spaces and their applications[J].Science China Mathematics,2008,51(12):2253-2284. 被引量:12
  • 2DING Yong,LAN SenHua.Anisotropic weak Hardy spaces and interpolation theorems[J].Science China Mathematics,2008,51(9):1690-1704. 被引量:6
  • 3Stein, E. M., Weiss, G.: On the theory of harmonic functions of several variables, I, The theory of Hp spaces. Acta Math., 103, 25-62 (1960).
  • 4Fefferman, C., Stein, E. M.: Hp spaces of several variables. Acta Math., 129, 137-193 (1972).
  • 5Coifman, R. R.: A real variable characterization of Hp. Studia Math., 51, 269-274 (1974).
  • 6Latter, R.: A decomposition of Hp(R^n) in terms of atoms. Studia Math., 62, 93-101 (1978).
  • 7Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Prince- ton University Press, Princeton, 1993.
  • 8Lu, S.: Four lectures on real Hp spaces, World Scientific, Singapore, 1995.
  • 9Garcfa-Cuerva, J.: Weighted Hp spaces. Dissertationes Math., 162, 1-63 (1979).
  • 10Fefferman, C., Riviere, N. M., Sagher, Y.: Interpolation between HP-spaces: the real method. Trans. Amer. Math. Soc. 191, 75-81 (1974).

共引文献16

同被引文献23

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部