摘要
Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).
Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).
基金
supported by the National Natural Science Foundation of China(11571039 and 11671185)
supported by the National Natural Science Foundation of China(11471042)