3S. Jouanneau a L, Recoules b c, M J Durand a, et al. Thouand. Methods for assessing biochemical oxygen demand (BOD) : A review[J] Water Res, 2014( 1 ) ;49:62 - 82.
4Shi H, Song B, Long F, et at. Automated online optical bioserlsing system for continuous real - time determination of microcystin - LR with high sensitivity and specificity: Early warning for cyanotoxin risk in drinking water sources[ J]. Environ Sei Technol, 2013, 47, 4434 -4441.
5Quan D, Shin W. A Nitrite Biosensor Based on Co - immobilization of Nitrite Reductase and Viologen modified Chitosan on a Glassy Carbon Electrode[ J]. Sensors, 2010, 10 : 6241 -6256.
6Qianyu Zhang, Jiawang Ding , Lijuan Kou, et al. A Potentiometric Flow Biosensor Based on Ammonia - Oxidizing Bacteria fi:r the Detection of Toxicity in Water[J]. Sensors, 2013, 13(6), 6936 -6945.
7Leth S, M alton i S, S imkus R, et al. Engineered bacteria based biosensors lot monitoring bioavailable heavy meta [ J ]. Eleetroanalysis, 2002, 14(1) :1.
8Roberto F F, Barnes J M, Bruhn D F. Evaluation of a GFP reporter gene construct for environmental arsenic detection Talanta [ J], 2002, 58 (1) : 181-188.
9FREIRE R S, THONGNGAMDEE S, DURAN N, et al. mixed enzyme (tacase/tyrosinase) based remote electrochemical biosensor for moni- toring phenolic compounds [ J]. Analyst, 2002, 127 (2) :258.
10Heitzer A, Malachow sky K, Thonnard JE, et al. Optical biosensor f or environmental on line monitoring of naphthalene and salicylate bio- availability with an immobilized bioluminescent cat abolic reporter bacterium[ J]. Applied and Environment al Microbiology, 1994, 60 ( 5 ) : 1487- 1494.