期刊文献+

利用辅助信息进行矩阵补全的核方法及其在多标记学习中的应用 被引量:1

Kernel method for matrix completion with side information and its application in multi-label learning
原文传递
导出
摘要 现实机器学习任务中一个样本通常和多个标记相关,但获取完整的标记信息需耗费大量人力物力,因此多标记学习经常会遇到标记缺失的情况.将未缺失的标记看作不完全的标记矩阵,将样本特征作为辅助信息,则可通过矩阵补全方法来解决该问题,以往研究主要针对线性可分情形,本文提出KernelMaxide方法,在处理线性不可分多标记数据中缺失的监督信息的同时,不仅能利用数据的非线性结构,还能考虑标记之间的相互关系.该方法依据矩阵核范数的表示定理,构建了基于核矩阵的核范数最小化优化目标以及相应的优化算法,并用Nystrm方法缓解核矩阵的存储和计算开销问题.实验显示出KernelMaxide的优越性能. In practical machine learning, one instance is always associated with multiple labels. However, due to high cost, it is difficult to acquire the full supervised information for multi-label data. Thus, multi-label learning faces the problem of missing supervised information. By considering missing labels as unobserved entries in a matrix and features as side information, the matrix completion algorithm can be exploited to solve the missingsuper vised-information problem in multi-label learning. While the previous research often focused on the case where data is linearly separable, in this paper, we propose the KernelMaxide algorithm, which not only exploits the nonlinear structure in the missing-super vised-information multi-label data, but also considers the correlation between labels. In particular, we construct a novel optimization objective based on the kernel matrix, using the Representer Theorem of Matrix Norm. We further use the Nystrm method to reduce the memory and computational burden on the kernel matrix. Experiments show the merit of our proposal.
作者 徐淼 周志华
出处 《中国科学:信息科学》 CSCD 北大核心 2018年第1期47-59,共13页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61333014)资助项目
关键词 机器学习 多标记学习 矩阵补全 核方法 Nystrm方法 machine learning, multi-label learning, matrix completion, kernel method, NystrSm method
  • 相关文献

参考文献3

二级参考文献27

  • 1王学伟,瞿海斌,王阶.一种基于数据挖掘的中医定量诊断方法[J].北京中医药大学学报,2005,28(1):4-7. 被引量:40
  • 2李国春,李春婷,黄蓝平,单兆伟,陈启光.结构方程模型探讨慢性萎缩性胃炎证候分型规律[J].南京中医药大学学报,2006,22(4):217-220. 被引量:27
  • 3Grangier D, Bengio S. A discriminative kernel-based approach to rank images from text queries. IEEE Trans Patt Anal Mach Intel, 2008, 30:1371-1384.
  • 4Chen Y, Wang J Z, Geman D. Image categorization by learning and reasoning with regions. J Mach Learn Res, 2004, 5:913- 939.
  • 5Maron O, Ratan A L. Multiple-instance learning for natural scene classification. In: Proceedings of the 15th International Conference on Machine Learning, Madison, Wisconsin, USA, 1998. 341 -349.
  • 6Wang C, Yan S, Zhang L, et al. Multi-label sparse coding for automatic image annotation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009. 1643-1650.
  • 7Han Y, Wu F, Jia J, et al. Multi-task sparse discriminant analysis (MTSDA) with overlapping categories. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, Georgia, USA, 2010. 469- 474.
  • 8Cao L, Luo J, Liang F, et al. Heterogeneous feature machines for visual recognition. In: Proceedings of the 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009.
  • 9Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B, 1996, 58:267- 288.
  • 10Yuan M, Lin Y. Model selection and estimation in regression with gronped variables. J Royal Star Soc Ser B, 2006, 68: 49- 67.

共引文献13

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部