期刊文献+

基于脉冲位置调制的测量设备无关量子密钥分发(英文) 被引量:4

Measurement-device-independent Quantum Key Distribution with Pulse-position Modulation
下载PDF
导出
摘要 为了进一步提高测量设备无关量子密钥分发(MDI-QKD)系统的传输距离和密钥率,将脉冲位置调制(PPM)技术引入到MDI-QKD中,利用弱光源中的空脉冲和高维编码技术,提出了一种高效的测量设备无关量子密钥分发,即PPM-MDI-QKD协议.协议中,通信双方首先将M个连续的弱脉冲构建成一个PPM帧,然后利用BB84极化编码和PPM编码方案实现高维编码,最后根据合法PPM帧、成功贝尔态测量结果以及匹配基筛选出安全密钥.数值计算结果表明,当光源平均光强小于0.13时,PPM-MDIQKD协议的性能优于MDI-QKD协议;与迄今为止报道的最远404km的MDI-QKD协议相比,在相同条件下,本协议最远传输距离能够达到480km,在404km传输距离上的密钥率可达5.4×10-4 bps. In order to further enhance the transmission distance and secret key rate of the MeasurementDevice-Independent Quantum Key Distribution(MDI-QKD)system,the Pulse Position Modulation(PPM)technique is introduced to the MDI-QKD protocol,and a new efficient quantum key distribution protocol,named PPM-MDI-QKD protocol,is proposed by utilizing the empty pulses of the weak source and high dimensional encoding technology.In the protocol,two communication parties firstly construct a PPM frame consisting of M consecutive weak pulses,then combine the BB84 polarization encoding and PPM encoding schemes to operate high dimensional encoding,and finally sift out the secure key with the legal PPM frame,the successful Bell-state measurement results,and matched bases.The numerical results show that the PPM-MDI-QKD protocol outperforms MDI-QKD protocol when the intensity of signals is less than 0.13.Moreover,compared with 404 km,the longest distance reported so far,the transmission distance can theoretically be extended to 480 km and the key rate up to 5.4×10^(-4) bps in 404 km,with the same parameters.
出处 《光子学报》 EI CAS CSCD 北大核心 2018年第3期201-208,共8页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(No.61475075) the Science and Technology Project of State Grid(No.SGRIXTKJ[2017]459) Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYLX15-0832)
关键词 量子通信 量子密码 量子光学 信息安全 光纤通信 Quantum communication Quantum cryptography Quantum optics Security of informationFiber optic communication
  • 相关文献

参考文献4

二级参考文献30

  • 1BENNETT C H,BRASSARD G.Quantum cryptography:Public key distribution and coin tossing[C].IEEE,1984:175-179.
  • 2ELLIOTT C,COLVIN A,PEARSON D,et al.Current status of the DARPA quantum network[C].SPIE,2005,5815:138-149.
  • 3POPPE A,PEEV M,MAURHART O.Outline of the SECOQC quantum-key-distribution network in Vienna [J ].International Journal of Quantum Information,2008,6(2):209-218.
  • 4SASAKI M,FUJIWARA M,ISHIZUKA H,et al.Field test of quantum key distribution in the Tokyo QKD network[J].Optics Express,2011,19(11):10387-10409.
  • 5CHEN Wei,HAN Zheng-fu,ZHANG Tao,et al.Field experiment on a "star type" metropolitan quantum key distribution network[J].IEEE Photonics Technology Letters,2009,21(9):575-577.
  • 6HAN Zheng-fu,XU Fang-xing,CHEN Wei,et al.An application-oriented hierarchical quantum cryptography network test hed[C].IEEE,2010.
  • 7ELLIOT C.Building the quantum network[J].New Journal of Physics,2002,4(46):1-12.
  • 8MAEDA W,TANAKA A,TAKAHASHI S,et al.Technologies for quantum key distribution networks integrated with optical communication networks[J].IEEE Journal of Selected Topics in Quantum Electronics,2009,15(6):1591-1601.
  • 9DAULER E A,SPELLMEYER N W,KERMAN A J,etal.High-rate quantum key distribution with superconducting nanowire single photon detectors[C].IEEE,2010.
  • 10SHIMIZU K,HONJO T,FUJIWARA M,et al.Performance of long-distance quantum key distribution over 90 km optical links installed in a field environment of Tokyo metropolitan area [ J ].IEEE Journal of Lightwave Technology,2014,32(1):141-151.

共引文献24

同被引文献34

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部