期刊文献+

基于FOA优化SOM-RBF的压力传感器温度补偿研究 被引量:9

Temperature Compensation Research of Pressure Sensor Based on FOA Improved SOM-RBF
下载PDF
导出
摘要 硅压阻式差压传感器受硅片和封装介质温度特性的影响,温变时,传感器输出呈现明显的非线性。文中提出一种全新温度补偿方法,采用基本RBF网络确定网络隐含层节点数,建立自适应SOM网络得到RBF网络中心值,采用FOA对RBF网络扩展参数进行寻优得到最终优化RBF网络,最后将测试数据输入网络得到补偿输出。结果表明:补偿精度随着RBF网络的优化逐步提升,补偿后平均最大相对误差精度为9.642 7×10-4,相对均方误差精度为2.476 2×10-7。模型输出结果验证了算法用于硅压力传感器温度补偿的有效性,抑制了温度对传感器输出的影响。 In order to alleviate the temperature effect on high precision silicon pressure sensor,a temperature compensationmodel based on the self-organizing feature maps(SOM)modified radial basis function neural network(RBF)and the Fruit Fly Op-timization Algorithm(FOA)was presented in this research.By incorporating the hierarchical clustering capability of SOM and thefast converging feature and the global optimizing ability of FOA into the modeling process,the proposed method was able to avoidthe randomness in the selection of the RBF centers and spread values,however,it made the pressure measurement more accuracy.A pressure calibration experiment was given and from which the data set with respect to key variables was obtained.The compen-sation results show that the maximum relative error is 9.6427×10-4,mean square error can reach 2.4762×10-7,which demon-strates that the proposed method is highly effective and applicable,effect of temperature on sensor output is suppressed.
出处 《仪表技术与传感器》 CSCD 北大核心 2018年第2期19-23,共5页 Instrument Technique and Sensor
基金 国家863计划项目(2014AA042001)
关键词 硅压力传感器 温度补偿 径向基网络 自组织聚类 果蝇算法 silicon pressure sensor temperature compensation RBF network self-organizing feature maps fruit fly algorithm
  • 相关文献

参考文献11

二级参考文献83

共引文献188

同被引文献109

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部