期刊文献+

融合贝叶斯和FSRM的相关反馈算法研究

Research on Relevance Feedback Algorithm of Fusion Bayesian and FSRM
下载PDF
导出
摘要 在图像检索领域当中,低层视觉特征和高层语义之间的"语义鸿沟"问题都是许多研究学者面前的一大障碍。相关反馈机制在一定程度上解决了"语义鸿沟"问题,同时相关反馈也存在反馈次数过多,反馈效果不够理想等问题。为解决上述问题,提出一种贝叶斯和模糊语义相关矩阵(FSRM)相结合的反馈算法。实现方法是:用贝叶斯分类器对图像库进行分类,达到压缩图像库的目的,然后用模糊语义相关矩阵对压缩之后的图像库进行检索,并反馈最终结果。研究结果表明,与贝叶斯算法和FSRM相比,本文提出的算法明显地提高了反馈效果,优化了反馈次数。 The semantic gap,which exists between low level visual features and high level semantic concepts,is an obstacle to the development of image retrieval. The semantic gap is narrowed by relevant feedback techniques to some extent. However,the image retrieval process with the relevant feedback techniques also has many disadvantages such as too many feedback times or unsatisfactory feedback effect. In order to improve the relevance feedback method,a new relevance feedback strategy combining Bayesian and FSRM technology has been presented. The main approach was achieved firstly by assorting the image library with the Bayesian classifier compressing the image library; secondly,by searching the compressed image library with the FSRM; and lastly,by returning the worked out results. The experiment results illustrated the accuracy of the feedback method and showed it to be the best compared with FSRM algorithm and Bayesian algorithm.
出处 《网络新媒体技术》 2018年第1期22-26,39,共6页 Network New Media Technology
基金 国家自然科学基金项目(61761042) 陕西省高水平大学建设项目(2015SXTS02) 延安大学自然基金项目(YDQ2016-25) 陕西省大学生创新计划项目(1568)
关键词 图像检索 相关反馈 贝叶斯(方法) 模糊语义相关矩阵 正态分布 image retrieval relevance feedback Bayesian(method) Fuzzy semantic relevance matrix normal distribution
  • 相关文献

参考文献6

二级参考文献42

  • 1余正涛,樊孝忠,郭剑毅.基于支持向量机的汉语问句分类[J].华南理工大学学报(自然科学版),2005,33(9):25-29. 被引量:20
  • 2周建新,高科,李锦涛,张勇东,唐胜.图像检索中一种有效的SVM相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(4):535-540. 被引量:10
  • 3Rui Y, Huang T S. Optimizing learning in image retrieval[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hihen Head Island: IEEE, 2000 : 236-243.
  • 4Zhon X S, Huang T S. Relevance feedback in image retrieval: a comprehensive review[J]. Multimedia Systems Journal, 2003,8 (6) : 536-544.
  • 5Hong P, Tian Q, Huang T S. Incorporate support vector machine to content-based image retrieval with relevance feedback [C] // Proceedings of International Conference on Image Pro cessing. Vancouver: IEEE, 2000 : 750-753.
  • 6http://sipi, usc. edu/services/database/index, html.
  • 7Y Rui,T S Huang,S Mehrotra.Content-based image retrieval with relevance feedback in mars[C].Proceed-ings of International Conference on Image Processing,USA,1997.
  • 8Y Rui,T S Huang,S Mehrotra.Relevance feedback:a power tool for interactive content-based image retrieval[J].Circuits and Systems for Video Technology,1998,8(5):56-59.
  • 9JI Ai-bing,NIU Qi-ming,HA Ming-hu.Support vector machine learning from positive and unlabeled samples[C].Proceedings of International Conference on Intelligent System andKnowledge Engineering,China,2008.
  • 10WAND Xue-jun,YANG Ling-ling.Yang.Application of SVM relevance feedback algorithms in image re-trieval[C].Proceedings of International Conference on Information Science andEngineering,China,2008.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部