期刊文献+

一类基于忆阻器分数阶时滞神经网络的修正投影同步 被引量:8

Modified Projective Synchronization of Memristor-Based Fractional-Order Delayed Neural Networks
下载PDF
导出
摘要 基于忆阻器分数阶时滞神经网络的研究是一个热点问题.该文主要研究了基于忆阻器分数阶时滞混沌神经网络的修正投影同步.结合分数阶微分不等式,得到了实现主动-被动系统获得同步的充分条件.其研究结果更具有一般性.相应的数值模拟证实了方法的有效性. The discussion of fractional-order memristor-based neural networks with time delay is a hot topic. The modified projective synchronization of fractional-order memristor-based neural networks with time delay was investigated. By means of the fractional-order inequality,sufficient conditions for the modified projective synchronization of drive-response systems were achieved. The results obtained here are more general. The corresponding numerical simulations show the feasibility of the theoretical results.
出处 《应用数学和力学》 CSCD 北大核心 2018年第2期239-248,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11571016) 安徽省自然科学基金(11040606M12 1608085MA14) 安徽省高等学校自然科学研究重点项目(KJ2015A152) 安徽省高校自然科学研究一般项目(AQKJ2014B012)
关键词 分数阶 基于忆阻器神经网络 时滞 修正投影同步 fractional order memristor-based neural network time delay modified projective synchronization
  • 相关文献

参考文献2

二级参考文献24

  • 1梁学斌,吴立德.Hopfield型神经网络的全局指数稳定性及其应用[J].中国科学(A辑),1995,25(5):523-532. 被引量:48
  • 2WANG IAn-shan, XU Dao-yi. Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays[J]. Science in China( Series E), 2003, 33(6) : 488-495.(in Chinese).
  • 3LIANG Xue-bin, WU lA-de. Global exponential stability of Hopfield-type neu- ral network and its applications [J]. Science in China (Series A), 1995, 25 (5) : 523-532. (in Chinese).
  • 4LIAO Xiao-xin, YANG Shu-zi. The stability of the generalized neural networks with re- action-diffusion[J]. Science in China( Series E), 2002, 32( 1 ) : 87-94. ( in Chinese).
  • 5WANG Zhan-shan, ZHANG Hua-guang. Synchronization stability in complex interconnected neural networks with nonsymmetric coupling [J]. Neurocomputing, 2013, 108 ( 5 ) : 84-92.
  • 6SONG Qian-kun. Design of controller on synchronization of chaotic neural networks with mixed time-varying delays[J].Neurocomputing, 2009, 72(13/15) : 3288-3295.
  • 7Pecora L M, CaroU T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 04: 821-824.
  • 8LIU Yu-rong, WANG Zi-dong, LIU Xiao-hui. Asymptotic stability for neural networks with mixed time delays: the discrete-time case[J]. Neural Networks, 2009, 22(1) : 57-74.
  • 9SONG Qian-kun, ZHAO Zhen-jiang. Cluster, local and complete synchronization in coupled neural networks with mixed delays and nonlinear coupling[J]. Neural Computing and Appli- cations, 2014, 24(5): 1101-1113.
  • 10WANG Hui-wei, SONG Qian-kun. Synchronization for an array of coupled stochastic discrete- time neural networks with mixed delays[J]. Neurocomputing, 2011, 74(10) : 1572-1584.

共引文献9

同被引文献38

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部