期刊文献+

一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用 被引量:12

A Kind of Deep Belief Networks Based on Nonlinear Features Extraction with Application to PM2.5 Concentration Prediction and Diagnosis
下载PDF
导出
摘要 传统的深度置信网络(Deep brief networks,DBN)在建立高维数据分类模型时,往往存在网络负荷大,运算复杂度高等问题.本文首先基于非线性PCA(NPCA)对高维样本数据进行降维,然后以提取到的非线性特征作为DBN的网络输入,构建了一类含非线性特征提取预处理机制的DBN分类器.并从信息熵理论的角度出发,证明了所提改进DBN分类器在网络结构和算法复杂度方面的优势.通过一个PM2.5浓度预测与影响因素诊断实例,验证了所提改进DBN在一类分类和影响因素诊断问题中的应用,并与传统的分类器进行对比,显示了所提方法在建模精度及收敛速度上的优势. To build a classifier model of high dimensional data, the traditional deep brief networks (DBN) modeling method suffers from large network load and high algorithm complexity. In this work, the data dimension is reduced based on the nonlinear PCA (NPCA), then a new DBN classifier with nonlinear feature extraction pre-processing mechanism is proposed where the nonlinear feature is extracted as the network input to the DBN. With the entropy theory, the advantage of the improved DBN is proved in terms of network structure and algorithm complexity. A PM2.5 concentration prediction and diagnosis problem is employed to exemplify applications of the proposed methods. Compared with the traditional classifier, it shows the advantage of the proposed method in modeling accuracy and convergence speed.
出处 《自动化学报》 EI CSCD 北大核心 2018年第2期318-329,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61603023) 北京市优秀人才资助项目(2015000020124G041) 中国科学院复杂系统管理与控制国家重点实验室开放课题(20150103)资助~~
关键词 深度置信网 非线性主元分析 PM2.5 信息熵 Deep brief networks (DBN), nonlinear-PCA (NPCA), PM2.5, entropy
  • 相关文献

参考文献9

二级参考文献120

  • 1张鸿宾.训练多层网络的样本数问题[J].自动化学报,1993,19(1):71-77. 被引量:23
  • 2阎平凡.人工神经网络的容量、学习与计算复杂性[J].电子学报,1995,23(5):63-67. 被引量:82
  • 3方剑,席裕庚.神经网络结构设计的准则和方法[J].信息与控制,1996,25(3):156-164. 被引量:21
  • 4武妍.计算智能集成理论及其应用研究:博士学位论文[M].上海:上海铁道大学,1999..
  • 5陈荣,徐用懋,兰鸿森.多层前向网络的研究——遗传BP算法和结构优化策略[J].自动化学报,1997,23(1):43-49. 被引量:51
  • 6Bartlett M S. Face Image Analysis by Unsupervised Learning and Redundancy Reduction. Ph. D Dissertation. San Diego, USA: University of California. Institute of Neural Computation, 1998:27-37
  • 7Chellappa R, Wilson C L, Sirohey S. Human and Machine Recognition of Faces: a Survey. Proc of the IEEE, 1995, 83(5): 705-741
  • 8Yang Jian, Zhang D, Frangi A F, et al. Two-Dimensional PCA:A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1) : 131-137
  • 9Liu Chengjun, Wechsler H. Independent Component Analysis of Gabor Features for Face Recognition. IEEE Trans on Neural Networks, 2003, 14(4): 919-928
  • 10Hyvarinen A, Oja E. Independent Component Analysis: Algorithm and Applications. Neural Networks, 2000, 13(4/5): 411-430

共引文献136

同被引文献106

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部