期刊文献+

Revisit of dilation-based shock capturing for discontinuous Galerkin methods

Revisit of dilation-based shock capturing for discontinuous Galerkin methods
下载PDF
导出
摘要 The idea of using velocity dilation for shock capturing is revisited in this paper, combined with the discontinuous Galerkin method. The value of artificial viscosity is determined using direct dilation instead of its higher order derivatives to reduce cost and degree of difficulty in computing derivatives. Alternative methods for estimating the element size of large aspect ratio and smooth artificial viscosity are proposed to further improve robustness and accuracy of the model. Several benchmark tests are conducted, ranging from subsonic to hypersonic flows involving strong shocks. Instead of adjusting empirical parameters to achieve optimum results for each case, all tests use a constant parameter for the model with reasonable success, indicating excellent robustness of the method. The model is only limited to third-order accuracy for smooth flows. This limitation may be relaxed by using a switch or a wall function. Overall, the model is a good candidate for compressible flows with potentials of further improvement. The idea of using velocity dilation for shock capturing is revisited in this paper, combined with the discontinuous Galerkin method. The value of artificial viscosity is determined using direct dilation instead of its higher order derivatives to reduce cost and degree of difficulty in computing derivatives. Alternative methods for estimating the element size of large aspect ratio and smooth artificial viscosity are proposed to further improve robustness and accuracy of the model. Several benchmark tests are conducted, ranging from subsonic to hypersonic flows involving strong shocks. Instead of adjusting empirical parameters to achieve optimum results for each case, all tests use a constant parameter for the model with reasonable success, indicating excellent robustness of the method. The model is only limited to third-order accuracy for smooth flows. This limitation may be relaxed by using a switch or a wall function. Overall, the model is a good candidate for compressible flows with potentials of further improvement.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第3期379-394,共16页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.11402016)
关键词 discontinuous Galerkin method axtificial viscosity compressible flow discontinuous Galerkin method, axtificial viscosity, compressible flow
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部