期刊文献+

基于自组织神经网络的军用车辆装备涂层腐蚀行为研究 被引量:1

Corrosion Behavior of Military Vehicle Equipment Coatings Based on Self-Organizing Feature Map Network
下载PDF
导出
摘要 为探究军用车辆有机涂层在全浸泡条件下的腐蚀行为特征,寻找评价涂层腐蚀防护性能的有效方法,通过对某型军绿有机涂层全浸泡条件下腐蚀行为电化学阻抗谱(EIS)特征的研究,提取并研究了低频阻抗模值Z0.1Hz、高频相位角θ10 k Hz和高频阻抗模值变化率k这3种特征参数的变化规律,并结合自组织神经网络(SOM)对涂层防护性能变化进行了辅助分析。特征参数变化规律与SOM分析结果均证明涂层在1 330 d浸泡过程中出现4个阶段的性能变化,反映了SOM神经网络辅助分析有机涂层浸泡性能的有效性。 Under immersion conditions, the corrosion behaviors of green organic coating were studied using electrochemical impedance spectroscopy (EIS) method, and three characteristic parameters (low frequency impedance |Z|0.1Hz , high frequency phase angle θ10kHz and value rate of high frequency impedance k ) from the EIS plot were selected to evaluate the protective performance of the coating. Moreover, the analysis of coating protection was also assisted by self-organizing feature map (SOM) network. Results showed that both the change law of feature parameter and SOM analysis result proved that the protective performance of organic coatings during 1 330 d could be divided into four stages, which represented SOM neural network was a helpful method for assistanalyzing the protective performance of organic coating at immersion state.
出处 《材料保护》 CAS CSCD 北大核心 2018年第1期47-50,54,共5页 Materials Protection
关键词 军用车辆 有机涂层 全浸泡条件 特征参数 自组织神经网络 military vehicle organic coating immersion condition feature parameter self- organizing feature map
  • 相关文献

参考文献6

二级参考文献33

共引文献178

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部