期刊文献+

基于EVA与经营风险偏好的供应链鲁棒优化模型 被引量:3

Robust Optimization Model of Supply Chain Based on EVA and Operational Risk Breference
原文传递
导出
摘要 在由一个制造商和多个外部供应商构成的多产品、多阶段供应链中,将经济增加值(EVA)作为体现价值创造的绩效指标,并考虑决策者的经营风险偏好,采用已知概率的离散情景描述资本成本与需求的波动情况,利用鲁棒随机规划方法,建立了以价值创造为目标的供应链鲁棒优化模型。应用分析的结果表明,模型能够将供应链的绩效与风险管理结合起来,减少资本成本与需求不确定对目标值的影响,得到具有鲁棒性的最优解,而且越是风险厌恶型的决策者越会为了保持较低的经营风险而放弃较大的EVA值。同时,决策者可选择不同的权重系数侧重于解鲁棒或模型鲁棒,保证供应链运作的鲁棒性,实现价值创造的目标。 pends on (EVA), terest of Creating shareholder value is commonly consider the performance model and risk management. as a prevalent metric of value--based performance debt and the hurdle rate changing, and thus there ed as the paramount business goal, which de- The core concept of Economic Value Added , is capital cost that is uncertain due to the in- is much risk of cash flow in value creation. A major factor causing operational risks is the uncertainty of product demand. In addition, due to the operat- ing leverage, fluctuation of demand may cause more change in operating income, and influence value crea- tion directly. Recent papers show increasing interest in value--based supply chains management. Howev- er, these researches neglect the influence of risk preference of decision--makers on EVA, and ignore the corresponding risk from the uncertainty of capital cost.
出处 《中国管理科学》 CSSCI CSCD 北大核心 2018年第2期62-70,共9页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(71772035,71571041,71372186)
关键词 EVA 经营风险偏好 价值创造 资本成本 鲁棒优化 EVA risk preference value creation capital cost robust optimization
  • 相关文献

参考文献1

二级参考文献14

  • 1Ben-Tal A, Nemirovski A. Robust solutions to uncertain linear programs[J]. Operations Research Letters, 1999, 25(1): 1-13.
  • 2Ben-Tal A, Nemirovski A. Robust solutions of linear programming problems contaminated with uncertain data[ J]. Mathemati- cal. Programming, 2000, 88(3) : 411-424.
  • 3Bertsimas D, Pachamanova D, Sim M. Robust linear optimization under general norms [ J]. Operations Research Letters, 2004, 32(6): 510-516.
  • 4Bertsimas D, Sim M. Robust discrete optimization and network flows[ J]. Mathematieal Programming, 2003, 98 (1) : 49-71.
  • 5Bertsimas D, Sim M. Price of robustness[ J ]. Operation Research, 2004, 52 ( 1 ) : 35-53.
  • 6E1-Ghaoui L, Lebret H. Robust solutions to least-square problems to uncertain data matrices [ J]. SIAM Journal of Matrix Analasis and Applieatons, 1997, 18 (4) : 1035-1064.
  • 7E1-Ghaoui L, Oustry F, Lebret H. Robust solutions to uncertain semidenite programs[ J]. SIAM Journal of Optimization, 1998, 9(1) : 33-52.
  • 8Bertsimas D, Thiele A. A robust optimization approach to inventory theory[J]. Operations Research, 2006, 54(1): 150-168.
  • 9Adida E, Perakis G. A robust optimization approach to dynamic pricing and inventory control with no backorders[ J]. Mathe- matical Programming, 2006, 107 (1-2) : 97-129.
  • 10Bienstock D, Ozbay N. Computing robust base-stock levels[ J]. Discrete Optimization, 2008, 5 (2) : 389-414.

共引文献2

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部