期刊文献+

算子矩阵的单值扩张性质的判定

The Judgement of The SVEP and for Operator Matrices
原文传递
导出
摘要 日表示无限维可分的复Hilbert空间,B(H)为日上的有界线性算子的全体.若对于复数域C中任意一个开集矿,满足方程(T—λI)f(λ)=0(任给λ∈U)的唯一的解析函数f:U→H为零函数,称算子T具有单值延拓性质(简记为T∈(SVEP)).若对任意一个紧算子K,T+K都满足单值延拓性质,称T∈B(H)满足单值延拓性质的稳定性.给出了2×2上三角算子矩阵满足单值延拓性质的稳定性的特征. H denotes a complex separable infinite dimensional Hilbert space. We let B(H) denote the algebra of all bounded linear operators on H. An operator T ∈ B(H) is said to have the single-valued extension property(SVEP for short), denoted by T ∈(SVEP), if for any open set U C C, the only analytic solution f : U → H of the equation (T - λI)f(λ) = 0 for all λ∈ U is the zero function on U. Here C denotes the set of complex numbers. T∈ B(H) is said to have the stability of the single-valued extension property if T + K has the single- valued extension property for any compact operatorK. In this paper, we characterize 2 × 2 upper triangular operator matrices for which the single valued extension property is stable under compact perturbatioas.
出处 《数学的实践与认识》 北大核心 2018年第4期264-271,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11471200)
关键词 单值延拓性质 紧摄动 single-valued extension property compact perturbations spectrum
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部